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In this paper, we propose and analyze a Lotka–Volterra competition like model which con-
sists of system of differential equations with piecewise constant arguments of delay to
study of interaction between tumor cells and Cytotoxic T lymphocytes (CTLs). In order to
get local and global behaviors of the system, we use Schur–Cohn criterion and constructed
a Lyapunov function. Some algebraic conditions which satisfy local and global stability of
the system are obtained. In addition, we investigate the possible bifurcation types for the
system and observe that the system may undergo Neimark–Sacker bifurcation. Moreover,
it is predicted a threshold value above which there is uncontrollable tumor growth, and
below periodic solutions that leading to tumor dormant state occur.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The theoretical studies of cancer growth under immu-
nological activities have a long history. These studies are
concerned with the behavior of cancer growth under the
effect of immunity as well as the effect of therapy. An
interesting therapeutic approach is immunotherapy which
consists in strengthening inherent ability of the immune
system to fight cancer [1]. The immune system consists
of effector cells which perform the immune response
against tumor, such as T lymphocyte, macrophages and
natural killer cells. T lymphocyte can be categorized into
two subclasses, namely, Cytotoxic T lymphocytes (CTLs)
and T-Helper cells (resting cells) [2]. CTLs are important
effector cells of the immune system which can remove
infected cells and tumor cells. The resting cells do not
directly kill tumor cells, as CTLs do. Instead they help the
activity of native CTLs by releasing cytokines.

Keeping in mind the above biological scenario, many
authors have used Lotka–Volterra like models for describ-
ing the interactions between the immune system and
growing tumors [1–11]. Through this mathematical mod-
eling, Costa et al. [3] have proposed the predator–prey like
model including new terms taking into account tumor
aggressiveness, the diffusion of lymphocyte and the effect
caused by cytokines on the tumor. Based on the Costa
model, a family of models has been investigated by Onofrio
[4]. On the other hand, Kuznetsov and Taylor [5] have pro-
posed a mathematical model of the CTLs response to the
growth of an immunogenic tumor. Their model exhibits a
number of phenomena that are seen in vivo. Kirschner
and Panetta [6] have generalized Kuznetsov model and
they have studied the role of IL-2 in tumor dynamics. Their
model expresses short tumor oscillations in tumor sizes as
well as long-term tumor relapse. Sarkar and Banerjee [7]
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have constructed very interesting predator–prey like
model which includes tumor cells, hunting predator cells
and resting predator cells. Spontaneous regression and
progression of a malignant tumor system have been
explained in this model. Another interesting Lotka–Volterra
model for describing the interactions between tumor and
normal cells has been studied by Gatenby [8]. In study of
Gatenby, tumor cells compete with normal cells for space
and other resources in an arbitrarily small volume of tissue
within an organ.

Now, it is interesting to note that some researchers
have realized that some sets of experimental data exhibit
the existence of a time-lag (or delay) in the tumor cell divi-
sion phase ([12–17]). Baker et al. [12] have explained this
situation well. They have showed that a mathematical
model of cell growth that takes into account a time lag in
the cell division phase is more suitable for experimental
data than the growth model of classical exponential ordin-
ary differential equations. Using the time delay factor, Sar-
kar and Banerjee [13] have extended their system in [7]
and have analyzed the solutions of the system. In their
model, growth of malignant tumor cell densities has been
controlled by different threshold values of the parameters.
Also, Villasana and Radunskaya [14] have studied Hopf
bifurcations and periodic solutions in a competition model
which incorporated a time-lag in the phases of the cell
cycle which regulate proliferation of the tumor cells.

Proliferation and activation of tumor cells together with
their competition with immune system are referred in
microscopic (cellular) level while macroscopic level refers
to cancer invasion and metastases [18]. For the micro-
scopic level, many authors have used a discrete model or
discrete value variable to describe the tumor immune
interaction because microscopic biological state is discrete
rather than continuous [18–22].

On the other hand, for a better understanding of the
process occurring in the growth of tumors, mathematical
models which can look at the interactions from the micro-
scopic level and from the macroscopic level at the same
time should be composed [19]. When the microscopic level
and the macroscopic level are considered at the same time,
there are two events to see in a population: a continuity
and the resting time of the tumor. For both time situations;
continuous and discrete, there are some population
dynamics in ecosystem which combine the properties of
both differential and difference equations. For such biolog-
ical events, Gopalsamy and Liu [23], Liu and Gopalsamy
[24], So and Yu [25], Muroya [26], Ozturk et al. [27], Boz-
kurt [28], Gurcan and Bozkurt [29] have constructed a
model with piecewise constant arguments.

By using piecewise constant arguments to investigate
population density of a single species, Gopalsamy and Liu
[23] have considered the differential equation

dNðtÞ
dt
¼ rNðtÞ 1� aNðtÞ � bNðsttÞf g; ð1Þ

where NðtÞ represents the population density, r, a, b are
positive numbers and stt is the integer part of t 2 ð0;1Þ.
The right hand side includes both regular and piecewise
constant arguments, the second one estimates of the pop-
ulation growth performed at equally spaced time intervals.
Following these studies ([23–26]), Ozturk et al. [27]
have modeled a population density of a bacteria species
in a microcosm as

dxðtÞ
dt
¼ rxðtÞ 1� axðtÞ � b0xðsttÞ � b1x st � 1tð Þf g; ð2Þ

which includes both continuous and discrete time for a
bacteria population. Bozkurt [28] has modeled an early
brain tumor growth by using differential equations with
piecewise constant arguments

dxðtÞ
dt
¼ xðtÞ r 1� axðtÞ � b0xðsttÞ � b1xðst � 1tÞð Þf

þ c1xðsttÞ þ c2xðst � 1tÞg:

In the present study, we construct a model with
piecewise constant arguments to describe tumor immune
system competition.

2. Model formulation

To construct our model, we first consider the following
model proposed by Gatenby [8].

dN1
dt ¼ r1N1 1� N1

k1

� �
� r1a12i

k1
N1N2 þ r1a12s

k1
N1N2;

dN2
dt ¼ r2N2 1� N2

k2

� �
� r2a21

k2
N1N2;

8><
>:
where N1 is the tumor population, N2 is the population of
normal cells from which the tumor arises.

The study of Gatenby relates to only continuous time
situations. We have extended his model including discrete
and continuous time situations with some extra terms and
have obtained the following Lotka–Volterra competition
like model with piecewise constant arguments of delay
which provides a description of tumor cells in competition
with the immune system:

dx
dt¼ r1xðtÞ 1� xðtÞ

k1

� �
�a1xðtÞy sttð Þþa2xðtÞy st�1tð Þ;

dy
dt¼ r2yðtÞ 1� yðtÞ

k2

� �
þa1yðtÞx sttð Þ�a2yðtÞx st�1tð Þ�d1yðtÞ;

8><
>:

ð3Þ

where stt denotes the integer part of t 2 ½0;1Þ and all
these parameters are positive. Here xðtÞ is the population
density, r1 the growth rate and k1 the carrying capacity
of tumor cells. yðtÞ is the population density, r2 the growth
rate, k2 the carrying capacity and d1 death rate of CTLs.

The model includes both discrete and continuous time
for each populations because tumor population has differ-
ent dynamics properties that can be described using both
differential and difference equations. In the first and sec-
ond equation, the first terms (logistic terms) include a
time-continuity for the growth of tumor cells and CTLs
and the term �d1yðtÞ includes a time-continuity for the
death of CTLs.

Since the competition between tumor cells and CTLs is
referred microscopic (cellular) level [18], we add discrete
time stt in competition term xðtÞyðtÞ. These results arise
following situation. T lymphocyte can be categorized into
two subclasses, namely, resting cells and Cytotoxic T lym-
phocytes (CTLs) which can remove tumor cells. On the
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other hand, the resting cells do not directly kill tumor cells,
as CTLs do. They are converted to the CTLs to kill tumor
cells. We assume that this conversion is not instantaneous
but followed by a discrete time. Therefore, the population
of CTLs may increases at discrete time interval during the
competition of tumor cells which is represented yðsttÞ.
Thus, the term �a1xðtÞyðsttÞ is the loss of tumor cells due
to the competition between the CTLs and tumor cells.

On the other hand, proliferation of the tumor cells is
arranged mitosis and needs a discrete time delay where
tumor cells have resting time and then again begin to pro-
liferate which is represented x st � 1tð Þ. In addition, the
immune system also needs some time delay to develop a
suitable response after the recognition of tumor cells which
is represented y st � 1tð Þ ([15,16]). Therefore, we have some
discrete time delay during the competing populations
which are represented yðtÞx st � 1tð Þ and xðtÞy st � 1tð Þ.
Thus the term �a2yðtÞx st � 1tð Þ is the loss of CTLs due to
the competition between the tumor cells and CTLs.

Because the competition phenomenon is complex and
variable, it also includes growth stimulator factors which
lead to positive effect on each population [8]. Thus, the
term a1yðtÞxðsttÞ is the positive effect on CTLs due to inter-
action tumor cells which stimulate CTLs growth and
a2xðtÞy st � 1tð Þ denotes positive effect on tumor cells due
to interaction with CTLs which stimulate tumor cell
growth. After a tumor cell is recognized by immune cells,
a competition may end up either with destruction of tumor
cells or with the inhibition and depression of the immune
system.

In our model, we assume that the growths of both
tumor cells and CTLs have a logistic growth and the carry-
ing capacity of tumor cells is greater than CTLs [2]. In addi-
tion, most of the parameter values are taken in [2] in terms
of consistency with the biological facts and these parame-
ter values are given in Table 1.

3. Local and global stability analysis

An integration of each equation in system (3) on an
interval of the form t 2 ½n;nþ 1Þ leads to

xðtÞ ¼ x nð Þe
R t

n
x sð Þ r1ð1�x sð ÞK1Þ�a1y nð Þþa2y n�1ð Þð Þds

;

yðtÞ ¼ y nð Þe
R t

n
y sð Þ r2 1�y sð ÞK2ð Þþa1x nð Þ�a2x n�1ð Þ�d1ð Þds

;

8<
:
where 1

k1
¼ K1;

1
k2
¼ K2. It is easy to see that if

xðnÞ; yðnÞ > 0, then xðtÞ; yðtÞ > 0. Furthermore, if we let
Table 1
Parameters values used for numerical analysis.

Parameters Values

r1 (growth rate of tumor cells) 0.18 day�1a

r2 (growth rate of CTLs) 0.1045 day�1a

k1 (carrying capacity of tumor cells) 5.0 � 106cellsa

k2(carrying capacity of CTLs) 3.0 � 106cellsa

a1 (decay rate of tumor cells by CTLs) 4.401 � 10�8cells�1day�1b

a2 (decay rate of CTLs by tumor cells) 3.422 � 10�9cells�1day�1a

d1 (death rate of CTLs) 0.0412 day�1a

a Sarkar and Banerjee [2].
b Parameter values within a biologically meaningful range.
t ! nþ 1, we obtain xðnþ 1Þ; yðnþ 1Þ > 0. This implies
that by using positive initial conditions we will have posi-
tive solutions of system (3).

On the other hand, on an interval of the form
t 2 ½n;nþ 1Þ, we can write system (3) as

dx
dt � r1 � a1yðnÞ þ a2yðn� 1Þf gxðtÞ ¼ �r1K1ðxðtÞÞ2;
dy
dt � r2 þ a1xðnÞ � a2xðn� 1Þ � d1f gyðtÞ ¼ �r2K2ðyðtÞÞ2:

(

ð4Þ

It can be easily seen that each equation in system (4) is
a Bernoulli differential equation and so we obtain

d
dt

1
xðtÞ e

½r1�a1yðnÞþa2yðn�1Þ�t
h i

¼ r1K1e½r1�a1yðnÞþa2yðn�1Þ�t;

d
dt

1
yðtÞ e

½r2þa1xðnÞ�a2xðn�1Þ�d1 �t
h i

¼ r2K2e½r2þa1xðnÞ�a2xðn�1Þ�d1 �t ;

8><
>:

ð5Þ

where n 6 t < nþ 1. Integrating both sides of each equa-
tions of (5) with respect to t on ½n; tÞ and letting
t ! nþ 1, we get

x nþ1ð Þ¼ x nð Þ r1�a1y nð Þþa2y n�1ð Þ½ �
½r1�a1y nð Þþa2y n�1ð Þ�r1K1xðnÞ�e� r1�a1y nð Þþa2 y n�1ð Þ½ �þr1K1xðnÞ

;

y nþ1ð Þ¼ y nð Þ r2þa1x nð Þ�a2x n�1ð Þ�d1½ �
½r2þa1x nð Þ�a2x n�1ð Þ�d1�r2K2yðnÞ�e� r2þa1x nð Þ�a2 x n�1ð Þ�d1½ �þr2K2yðnÞ

:

8<
:

ð6Þ

Now, we have a two dimensional system of difference
equations. To investigate more about the system we need
to determine an equilibrium point of the system. Under
the conditions

a1 > a2; r2 > d1 and r1 >
a1 � a2ð Þ r2 � d1ð Þ

K2r2
; ð7Þ

we have a positive equilibrium point of system (6) as;

�x;�yð Þ¼ K2r1r2þ a2�a1ð Þ r2�d1ð Þ
K1K2r1r2þ a1�a2ð Þ2

;
K1r1 r2�d1ð Þþ r1 a1�a2ð Þ

K1K2r1r2þ a1�a2ð Þ2

 !
:

ð8Þ

The linearized system of (6) about ð�x; �yÞ is
wðnþ 1Þ ¼ BwðnÞ, where B is a matrix as

B¼

e�K1r1�x 0 �ð1�e�K1 r1�xÞa1
K1r1

1�e�K1 r1�xð Þa2

K1r1

1 0 0 0
ð1�e�K2r2�yÞa1

K2r2
�ð1�e�K2 r2�yÞa2

K2r2
e�K2r2�y 0

0 0 1 0

0
BBBBB@

1
CCCCCA:

The characteristic equation of the matrix B can be given
as follows;

A kð Þ¼ k4þk3 �e�K1r1�x�e�K2r2�y
� �

þk2 e�K2r2�y�K1r1�xþ a2
1

K1r1K2r2
1�e�K1r1�x
� �

1�e�K2r2�y
� �� �

þk
�2a1a2

K1r1K2r2
1�e�K1r1�x
� �

1�e�K2r2�y
� �� �

þ a2
2

K1r1K2r2
1�e�K1r1�x
� �

1�e�K2r2�y
� �

: ð9Þ

Since we have a fourth order characteristic equation, we
can apply Schur–Cohn criterion to determine stability
conditions of discrete systems.
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Theorem A [30]. The characteristic polynomial

A kð Þ ¼ k4 þ a3k
3 þ a2k

2 þ a1kþ a0;

has all its roots inside the unit open disk ð kj j < 1Þ if and only if

(a) Að1Þ > 0 and Að�1Þ > 0,
(b) Dþ1 ¼ 1þ a0 > 0 and D�1 ¼ 1� a0 > 0,
(c) Dþ3 ¼ ð1� a0Þð1þ a0Þða2 þ 1þ a0Þ þ ða0a3 � a1Þða3þ

a1Þ > 0,
(d) D�3 ¼ ð1� a0Þ2ð1þ a0� a2Þþ ða0a3� a1Þða1� a3Þ> 0.

By using Theorem A, we can analyze the local behavior of
system (6) in the following theorem.
Theorem 3.1. Let ð�x; �yÞ the positive equilibrium point of
system (6) and

a1 > 2a2 þ
ffiffiffi
5
p

a2 r2 > d1; K2 >
a1 � a2ð Þ r2 � d1ð Þ

r2 ln a2
1�a2

2
a2

1
�2a2

2
�2a1a2

� � :
The positive equilibrium point of the system is local asymptot-
ically stable if

ða2
1 � a2

2Þðer1 � 1Þ
r1K2r2er1

< K1 <
a2

1 � a2
2 � 2a1a2

r1K2r2
;

and

ln
a2

1 � a2
2

a2
1 � 2a2

2 � 2a1a2

	 

< r1 < ln

a2
1 � a2

2

2a1a2

	 

:

Proof. From (9), we have

a3 ¼ �e�K1r1�x � e�K2r2�y;

a2 ¼ e�K2r2�y�K1r1�x þ a2
1

K1r1K2r2
1� e�K1r1�x
� �

1� e�K2r2�y
� �

;

a1 ¼
�2a1a2

K1r1K2r2
1� e�K1r1�x
� �

1� e�K2r2�y
� �

;

a0 ¼
a2

2

K1r1K2r2
1� e�K1r1�x
� �

1� e�K2r2�y
� �

:

By analyzing the condition (a) of Theorem A, we get

Að1Þ¼ a1�a2ð Þ2

K1r1K2r2
þ1

 !
1�e�K1r1�x
� �

1�e�K2r2�y
� �

>0; ð10Þ

A �1ð Þ¼ a1þa2ð Þ2

K1r1K2r2
þ1

 !
1þe�K1r1�x
� �

1þe�K2r2�y
� �

>0: ð11Þ

These inequalities show that (a) always holds.
Through the analyzes of (b), we get

Dþ1 ¼ 1þ 1� e�K1r1�x
� �

1� e�K2r2�y
� � a2

2

K1r1K2r2
> 0; ð12Þ

D�1 ¼ 1� 1� e�K1r1�x
� �

1� e�K2r2�y
� � a2

2

K1r1K2r2
> 0: ð13Þ

It is clear that condition (12) is always available. If

K1 >
a2

2

r1K2r2
; ð14Þ

then (13) holds.
Considering (c) of Theorem A, we have

Dþ3 ¼ 1þ 1�e�K1 r1�x
� �

1�e�K2 r2 �y
� � a2

2

K1r1K2r2

� �

� 1� 1�e�K1r1�x
� �

1�e�K2 r2�y
� � a2

2

K1r1K2r2

� �

� 1þe�K2 r2�y�K1r1�xþ 1�e�K1r1�x
� �

1�e�K2 r2�y
� � a2

1þa2
2

K1r1K2r2

	 
� �

� 1�e�K1 r1�x
� �

1�e�K2 r2 �y
� � 2a1a2�a2

2 e�K1 r1�xþe�K2 r2 �y
� �

K1r1K2r2

	 
� �

� e�K1 r1�xþe�K2 r2 �yþ 1�e�K1r1�x
� �

1�e�K2 r2�y
� � 2a1a2

K1r1K2r2

� �
>0: ð15Þ

Analyzing (15) we hold

K1 >
a2

2 þ 2a1a2

r1K2r2
:

Regarding (d), we will get

D�3 ¼ 1� 1�e�K1 r1�x
� �

1�e�K2 r2 �y
� � a2

2

K1r1K2r2

� �2

� 1�e�K2 r2�y�K1r1�x� 1�e�K1r1�x
� �

1�e�K2 r2�y
� � a2

1�a2
2

K1r1K2r2

	 
� �

þ 1�e�K1 r1�x
� �

1�e�K2 r2 �y
� �2a1a2�a2

2 e�K1r1�xþe�K2r2 �y
� �

K1r1K2r2

� �

� e�K1 r1�xþe�K2 r2 �y� 1�e�K1r1�x
� �

1�e�K2 r2�y
� � 2a1a2

K1r1K2r2

� �
>0: ð16Þ

If

K1 <
a2

1 � a2
2 � 2a1a2

r1K2r2
and K1 >

a2
1 � a2

2

� �
ðer1 � 1Þ

r1K2r2er1
;

then (16) holds. Under the following conditions

a1�a2ð Þ r2�d1ð Þ
K2r2

< ln
a2

1�a2
2

a2
1�2a2

2�2a1a2

	 

< r1 < ln

a2
1�a2

2

2a1a2

	 

;

we can write

a2
2

r1K2r2
<

a2
2þ2a1a2

r1K2r2
<

a2
1�a2

2

� �
ðer1 �1Þ

r1K2r2er1
<K1 <

a2
1�a2

2�2a1a2

r1K2r2
;

where

a1 > 2a2 þ
ffiffiffi
5
p

a2 and K2 >
a1 � a2ð Þ r2 � d1ð Þ

r2 ln a2
1�a2

2
a2

1�2a2
2�2a1a2

� � :
This completes the proof. h
Example 3.1. Using parameter values in Table 1 and initial
conditions x 1ð Þ ¼ 1:1� 106; x 2ð Þ ¼ 1:4� 106; y 1ð Þ ¼ 3:2�
106; y 2ð Þ ¼ 3:4� 106, the graph of the first 200 iterations
of system (6) is obtained as in Fig. 1a. It can be shown that
under the conditions given in Theorem 3.1, the equilibrium
point �x; �yð Þ ¼ ð1:27552� 106;3:30347� 106Þ is local
asymptotically stable. Here, blue and red graphs represent
population density of tumor cells and CTLs respectively.
Theorem 3.2. Suppose that the conditions in Theorem 3.1
hold and assume that

r1 � a1y nð Þ þ a2y n� 1ð Þ > 0 and
r2 þ a1x nð Þ � a2x n� 1ð Þ � d1 > 0:
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Fig. 1. Graph of the iteration solution of x(n) and y(n) for different initial conditions. The parameter set is taken from Table 1. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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If

r1K1x nð Þ< r1�a1y nð Þþa2y n�1ð Þ< ln
2�x�x nð Þ

x nð Þ

	 

; ð17Þ

r2K2y nð Þ< r2þa1x nð Þ�a2x n�1ð Þ�d1 < ln
2�y�y nð Þ

y nð Þ

	 

ð18Þ

and

xðnÞ < �x; y nð Þ < �y;

then the positive equilibrium point of system (6) is global
asymptotically stable.
Proof. Suppose that �z ¼ �x; �yð Þ is a positive equilibrium
point of system (6). We consider a Lyapunov function
V nð Þ defined as

V nð Þ ¼ ½Z nð Þ � �z�2; n ¼ 0;1;2 . . .

The change along the solutions of the system is

DV nð Þ ¼ V nþ 1ð Þ � V nð Þ
¼ Z nþ 1ð Þ � Z nð Þf g Z nþ 1ð Þ þ Z nð Þ � 2�zf g:

From the first equation in (6), we obtain

DV1 nð Þ ¼ x nþ 1ð Þ � x nð Þ½ �½x nþ 1ð Þ þ x nð Þ � 2�x�:



174 F. Gurcan et al. / Chaos, Solitons & Fractals 68 (2014) 169–179
Since r1K1x nð Þ < r1 � a1y nð Þ þ a2y n� 1ð Þ, we get
x nþ 1ð Þ � x nð Þ > 0. If we add x nð Þ < 2�x to (17), we

have x nþ 1ð Þ þ x nð Þ � 2�x < 0. From ln 2�x�x nð Þ
x nð Þ

� �
> 0, we

have x nð Þ < �x. Thus, it is obtained that DV1 nð Þ < 0. Similarly,
It can be shown that DV2 nð Þ < 0. Consequently, we obtain
DV nð Þ ¼ ðDV1 nð Þ;DV2 nð ÞÞ < 0. This completes the proof. h
Example 3.2. Considering the conditions of Theorem 3.2,
we can use initial conditions x 1ð Þ ¼ 0:5� 106; x 2ð Þ ¼
2:5� 106; y 1ð Þ ¼ 1:5� 106; y 2ð Þ ¼ 4:5� 106. The graph
of the first 200 iterations of system (6) is given in Fig. 1b
where blue and red graphs represent population density
of tumor cells and CTLs respectively.

In our study, a pivotal role has been played by two
parameters; k1 (carrying capacity of tumor cells) and r1

(growth rate of tumor cells). To get some information
about stability of the system according to changing of
these parameters, the value of k1 is increased to 5� 108

and norms of dominant eigenvalues of the system are
examined against to r1 (Fig. 2). Until r1 reaches a certain
threshold value, the norms are less than 1 and the system
is stable. If r1 is increased beyond this threshold value, the
norms will be greater than 1 and stability of the system
switches to unstable situation. In bifurcation analysis, we
can also determine this threshold value of r1 by using the
Schur–Cohn criterion.
4. Bifurcation analysis

In this section, we investigate the possible bifurcation
types for the system by using Schur–Cohn criterion. It is
well known that replacing condition (a) in Theorem A by
Að1Þ ¼ 0 and Að�1Þ > 0, the algebraic conditions under
which the system may undergo stationary bifurcation are
0.5 1 1.5 2 2.5
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

7

x(

y(
n)

Fig. 3. Graph of Neimark–Sacker bifurcation of system 6 for �r1 ¼ 1:23638, whe
parameters are taken from Table 1.
obtained. Replacing condition (a) in Theorem A by
Að1Þ > 0 and Að�1Þ ¼ 0, conditions of period doubling
bifurcation are obtained. But these conditions are not hold
for the system because of the inequalities (10) and (11).
Hence stationary bifurcation and period doubling bifurca-
tion do not exist for the system.

Now, we can investigate the Neimark–Sacker bifurca-
tion in our system. The Neimark–Sacker bifurcation is the
discrete-time version of the Hopf bifurcation in the contin-
uous case where periodic solutions arise as a consequence
of this bifurcation. The existence of periodic solutions is
relavant cancer models. It implies that the tumor levels
may oscillate around a equilibrium point even in absence
of any treatment. Such a phenomenon, which is known
as Jeff’s Phenomenon has been observed clinically [31]
and has arised many cancer models [2,5,6,13–15]. To
get algebraic conditions of Neimark–Sacker bifurcation,
we need to put the D�3 ¼ 0 instead of D�3 > 0 in the Theo-
rem A. Thus, algebraic conditions for Neimark–Sacker
bifurcation of the system can be obtained. Using these
algebraic conditions, we can determine bifurcation point
of the system as in the following example.

Example 4.1. For the Neimark–Sacker bifurcation, we
must verify conditions Að1Þ > 0; Að�1Þ > 0; D�1 > 0;
Dþ3 > 0 and D�3 ¼ 0. We have already seen that conditions
Að1Þ > 0;Að�1Þ > 0 and Dþ1 > 0 are always satisfied in the
local stability analysis. For k1 ¼ 5� 108, If we solve D�3 ¼ 0,
then we have �r1 ¼ 1:23638. Clearly, for this �r1 we have also
D�1 ¼ 0:995144 > 0 and Dþ3 ¼ 1:98142 > 0.

Another way to see Neimark–Sacker bifurcation, we can
compute norm of eiganvalues of system (6) as follows;

k1;2

�� �� ¼ 0:0595655� 0:0361638ij j ¼ 0:0696841 < 1;

k3;4

�� �� ¼ 0:594205� 0:804314ij j ¼ 1:
3 3.5 4 4.5 5

x 10
7n)

re k1 ¼ 5� 108; xð1Þ ¼ xð2Þ ¼ 1� 107; yð1Þ ¼ yð2Þ ¼ 1:5� 107 and other
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These norms of eigenvalue show that a pair of complex
conjugate eigenvalue is on the unit circle and the other
eigenvalues are inside the circle. These results confirm that
Neimark–Sacker bifurcation exists for the system (Fig. 3).

Now we simulate the behavior of the model both before
r1 < �r1 ¼ 1:23638ð Þ and after the bifurcation point
r1 > �r1ð Þ. For r1 < �r1, the solution of the system has

damped oscillations and the positive equilibrium point is
local asymptotically stable (Fig. 4a). These damped oscilla-
tions persist up to �r1. If r1 is increased beyond this value,
the positive equilibrium point of the system tends to
unstable situation (Fig. 4b). In addition, we plot bifurcation
diagram of the system with respect to parameter r1 (Fig. 5)
and observe dynamic behavior of the system. The figure
shows that the system may exhibit chaotic behavior after
the bifurcation point. In the following subsection, we
investigate the chaotic dynamics of the system according
to Fig. 5 by using Lyapunov characteristic exponents that
are a classic analytic tool to measure chaos.

4.1. Determining chaotic behavior of the system

Discrete dynamical systems may exhibit different
dynamics behavior such as stable dynamics or unstable
dynamics which may lead to chaos. To determine whether
or not the system exhibits chaotic motion one can use
Lyapunov exponents or Lyapunov characteristic exponents
(LCEs) which are a useful tool to examine stability dynam-
ics of both continuous and discrete dynamical system. LCEs
measure the separation in time of two orbits starting from
arbitrary close initial points. If a Lyapunov exponent is
positive, then one can say that the system is chaotic. This
implies that two trajectories that start close to each other
will diverge as time increases, as seen in Fig. 4b.

In this paper, we use a method presented in [32,33] for
estimating Lyapunov exponents of discrete dynamical
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Fig. 4. Graph of the iteration solution of xðnÞ and yðnÞ for r1 ¼ 1:1 (a) and r1 ¼ 1
same as Fig. 3. (For interpretation of the references to color in this figure legend
system xkþ1 ¼ F xkð Þ; k ¼ 0;1; . . . . The method based on
computing the QR decomposition of the Jacobian matrix
B and can be summarized as follows. Firstly, we consider
orthogonal matrix Q0 such that QT

0:Q 0 ¼ I. By solving
Zkþ1 ¼ Bk:Q k; k ¼ 0;1; . . ., we can obtain the decomposition
Zkþ1 ¼ Q kþ1:Rkþ1, where Qkþ1 is an orthogonal matrix and
Rkþ1 is upper triangular matrix with positive diagonal ele-
ments [32]. Thus, the LCEs can be calculated as

ki ¼ lim
k!1

1
k

ln ðRiÞjj
� �

; j ¼ 1; . . . ;m: ð19Þ

Now, we can obtain the Lyapunov exponents of the sys-
tem by using the formula (19). The calculated LCEs of the
system according to Fig. 5 are given Table 2 and converge
of the LCEs is shown in Fig. 6. It is shown from Table 2
and Fig. 6 that the system exhibits chaotic behavior for
r1 > �r1.

5. Results and discussion

In this study, we have proposed and analyzed a mathe-
matical model for the study of interaction between tumor
cells and CTLs which is main struggle of immune system.
For this, we have used Schur–Cohn criterion and con-
structed Lyapunov function in order to obtain sufficient
conditions that ensure local and global stability of the sys-
tem. To support theoretical results with numerically, we
have used some realistic parameter values that are taken
in [2] in terms of consistency with the biological facts.

In our model, the parameter k1 (carrying capacity of
tumor cells) and r1 (growth rate of tumor cells) have a
strong effect on the stability of the system. To see this effect,
carrying capacity of tumor cells is increased to 5� 108 and
we analyze stability of the system according to changing r1

parameter and obtain a threshold (bifurcation point)
according to this parameter. If r1 < �r1 ¼ 1:23638, then the
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:5 (b) where k1 ¼ 5� 108. Initial conditions and other parameters are the
, the reader is referred to the web version of this article.)
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Fig. 5. Graph of ðr1; ðxðnÞ; yðnÞÞÞ where k1 ¼ 5� 108. Initial conditions and other parameters are the same as Fig. 3. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Table 2
The calculated LCEs of the system according to Fig. 5.

Parameter
values

Lyapunov exponents

r1 ¼ 1:1 f�0:0420568;�0:0425353;�2:71125;�2:71144g
�r1 ¼ 1:23638 f0:000545118;�0:00010682;�2:66393;�2:66407g
r1 ¼ 1:3 f0:0210309;0:0203559;�2:64698;�2:64715g
r1 ¼ 1:4 f0:0532232;0:0527537;�2:62524;�2:62563g
r1 ¼ 1:5 f0:0851813;0:0845747;�2:60827;�2:60895g
r1 ¼ 1:6 f0:116046;0:115799;�2:59543;�2:59545g
r1 ¼ 1:7 f0:145993;0:145694;�2:58465;�2:58547g
r1 ¼ 1:8 f0:17468;0:174265;�2:57628;�2:57742g
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solution of system (6) has damped oscillation and the posi-
tive equilibrium point is local asymptotically stable (Figs. 2,
4a and 5). These oscillations give way to a stable spiral with
very quick damping, leading to small and persistent tumor.
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Fig. 6. Converge plot of the Lyapunov spectrum for the system with respect t
This means that the populations of CTLs and tumor cells
coexist and their sizes do not vary, namely tumor dormant
state [11]. This result can be seen in Figs. 4a and 5 where
blue and red graphs represent population density of tumor
cells and CTLs respectively. In addition, Fig. 7 helps us to
identify stable region of the system with respect to chang-
ing the parameter r1 and k1.

On the other hand, we observe that stability switches at
�r1 ¼ 1:23638 that is bifurcation point (Figs. 3 and 5). If r1 is
increased beyond �r1, the system tends to unstable situation
even in absence of any treatment. Moreover, Fig. 5 shows
that this unstable situation leads to uncontrolled tumor
growth and chaotic behavior occurs for the tumor cells in
the interval r1 > �r1 (Table 2 and Fig. 6). Therefore, the sys-
tem needs external intervention until the growth rate of
tumor cells reaches to �r1. Otherwise the patient may be
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o parameter r1 ¼ 1:1 (a), �r1 ¼ 1:23638 (b), r1 ¼ 1:5 (c) and r1 ¼ 1:8 (d).
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Fig. 8. Bifurcation diagram of the system with respect to parameter r2 where r1 ¼ 1:6. The other parameters and initial conditions are the same as Fig. 3.
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died as a result of uncontrolled tumor growth. The external
intervention may be increasing the growth rate of CTLs
since the growth rate of CTLs (r2Þ plays an important role
in expanding the stable interval of the system. For exam-
ple, if the growth rate of CTLs ðr2Þ is increased from
0.1045 to 0.1245, the bifurcation point of the system rises
from �r1 ¼ 1:23638 to �r11 ¼ 1:24093. In biologically, the
growth rate of CTLs may be increases the treatment Adap-
tive Cellular Immunotherapy (ACI) [13]. As seen above theo-
retical results, it can be seen that determining bifurcation
point is a very important issue for controlling unlimited
tumor growth.

We also investigate the dynamic behavior of the system
in chaotic region ðr1 > �r1Þ. In this region, the growth rate of
CTLs (r2Þ plays an important role in controlling tumor cells
growth. The bifurcation plot (Fig. 8) for r2 helps us to iden-
tify the region ðr2 > 0:513443Þ where the chaotic behavior
for tumor cells end up. In addition, we observe that the
parameter a1 (decay rate of tumor cells) is another impor-
tant parameter for the control the tumor cells in chaotic
region. As the parameter a1 is increased in this region,
the population size of tumor cells can be constrained to
low or null values namely tumor remission (Fig. 9). In this
situation, the system tends a new equilibrium point

�x; �yð Þ ¼ 0;� d1�r2
K2r2

� �
where the tumor cells eliminate by

CTLs. Therefore, it is possible to reach the tumor-free
steady state by increasing the parameter a1. As a result
we can say that the parameters r2 and a1 are effective tools
to control the tumor growth in chaotic region. Thus, we
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explain the different dynamics behavior of tumor cells
such as tumor dormant state, tumor remission and uncon-
trolled tumor growth.
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