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ON A THREE-DIMENSIONAL SYSTEM OF DIFFERENCE
EQUATIONS WITH VARIABLE COEFFICIENTS†

MERVE KARA∗, YASIN YAZLIK, NOURESSADAT TOUAFEK, YOUSSOUF AKROUR

Abstract. Consider the three-dimensional system of difference equations

xn+1 =

∏k
j=0 zn−3j∏k

j=1 xn−(3j−1)

(
an + bn

∏k
j=0 zn−3j

) ,

yn+1 =

∏k
j=0 xn−3j∏k

j=1 yn−(3j−1)

(
cn + dn

∏k
j=0 xn−3j

) ,

zn+1 =

∏k
j=0 yn−3j∏k

j=1 zn−(3j−1)

(
en + fn

∏k
j=0 yn−3j

) , n ∈ N0,

where k ∈ N0, the sequences (an)n∈N0
, (bn)n∈N0

, (cn)n∈N0
, (dn)n∈N0

,
(en)n∈N0

, (fn)n∈N0
and the initial values x−3k, x−3k+1, . . . , x0, y−3k,

y−3k+1, . . . , y0, z−3k, z−3k+1, . . . , z0 are real numbers.
In this work, we give explicit formulas for the well defined solutions

of the above system. Also, the forbidden set of solution of the system is
found. For the constant case, a result on the existence of periodic solutions
is provided and the asymptotic behavior of the solutions is investigated in
detail.
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1. Introduction

First, remind that N, N0, Z, R, C, stand for natural, non-negative integer,
integer, real and complex numbers, respectively. If m,n ∈ Z, m ≤ n the notation
i = m,n stands for {i ∈ Z : m ≤ i ≤ n}.
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In this paper, we consider the following three-dimensional system,

xn+1 =

∏k
j=0 zn−3j∏k

j=1 xn−(3j−1)

(
an + bn

∏k
j=0 zn−3j

) ,
yn+1 =

∏k
j=0 xn−3j∏k

j=1 yn−(3j−1)

(
cn + dn

∏k
j=0 xn−3j

) ,
zn+1 =

∏k
j=0 yn−3j∏k

j=1 zn−(3j−1)

(
en + fn

∏k
j=0 yn−3j

) , n ∈ N0, (1)

where k ∈ N0 the sequences (an)n∈N0
, (bn)n∈N0

, (cn)n∈N0
, (dn)n∈N0

, (en)n∈N0
,

(fn)n∈N0
are real and the initial values x−3k, x−3k+1, . . . , x0, y−3k, y−3k+1, . . . ,

y0, z−3k, z−3k+1, . . . , z0 are real numbers.
Difference equations emerge from the study of the evolution of naturally oc-

curring events. The theory of difference equations systems and difference equa-
tions greatly improved until today. Recently, there has been great interest in
studying difference equations systems. Because difference equations and their
systems are used to describes real discrete models in various branches of modern
sciences such as biology, economics, physics, engineering genetics, psychology,
control theory. In addition, the applications of difference equations systems are
rapidly increasing to aforementioned fields. There is no doubt that the theory
of difference equations will proceed to play an important role in mathematics.
Especially, non-linear difference equations and their systems play an important
role in applications. These difference equations and their systems often arise as
mathematical model of a problem. In such a case, solutions of the model is ex-
amined by means of mathematical methods. Therefore, the non-linear difference
equations are a rich area of study in mathematics. Consequently, studying the
solutions of difference equations and its qualitative behaviors have become focus
topics for research. The main problem of theory of difference equations is to
state behaviour of the solutions of difference equations. There are some meth-
ods of doing this. The most basic and classical of these methods is undoubtedly
to find a closed formula for the solutions of equations. By doing so, one can
acquire more concrete results. Most non-linear difference equations and systems
of difference equations cannot be solved. However, by the help of appropriate
transformations, some types can be transformed into linear difference equations
or their systems which can be generally solved in closed form.

Solving non-linear difference equations and their systems is a very hot top-
ics that continue to attract the attention of a wide range of researchers, we can
consult the following papers [1,2,11,13–17,19–22,26,28,29] to see several models
of difference equations and systems that are solved in closed form, but also to
understand procedures used in solving such equations and systems.
Many authors solved or investigated global behavior of the case k = 0 in system
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(1), which is a two-dimensional system in [3–5, 27]. Also the global asymptotic
behavior of solutions of difference equations or two and three dimensional sys-
tems where investigated in several studies, see for example [6, 7, 12,18,23–25].

In [10], El-Metwally et al., obtained the solutions of the following fourth order
difference equation

xn+1 =
xnxn−3

xn−2 (±1± xnxn−3)
, n ∈ N0, (2)

In [9] and as extension of the work in [10], the authors solve the two-dimensional
system of difference equations

xn+1 =
xnyn−3

yn−2 (±1± xnyn−3)
, yn+1 =

ynxn−3

xn−2 (±1± ynxn−3)
n ∈ N0, (3)

Clearly equation (2) is a particular case of the one dimensional version of our
system (1) for k = 1.

In an earlier paper, Haddad et al., in [14], deal with the following system of
difference equations

xn+1 =

∏k
j=0 yn−2j∏k

j=1 xn−(2j−1)

(
an + bn

∏k
j=0 yn−2j

) ,
yn+1 =

∏k
j=0 xn−2j∏k

j=1 yn−(2j−1)

(
αn + βn

∏k
j=0 xn−2j

) , n ∈ N0. (4)

The authors showed that the system (4) is solvable in closed form and presented
formulas for the solution.

Motivated by all of these results, we solve the system (1) in explicit form
and we describe the forbidden set for the initial values. For the coefficients are
constant case we show existence of periodic solutions and we investigate the
asymptotic behavior of well-defined solutions.
To solve system (1), we will use a change of variable to transform our system to
some first order linear systems. For this purpose we will use the following very
well known result, see for example [8].

Lemma 1.1. Consider the linear difference equation
yn+1 = anyn + bn, n ∈ N0.

Then,

yn =

(
n−1∏
i=0

ai

)
y0 +

n−1∑
r=0

(
n−1∏

i=r+1

ai

)
br.

Moreover if an and bn are constants, that is an = a and bn = b, then

yn =

{
any0 +

an−1
a−1 b, n ∈ N0, a ̸= 1,

y0 + bn, n ∈ N0, a = 1,

where as usual,
∏m

j=i αj = 1 and
∑m

j=i βj = 0, for all m < i.
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2. Form of the solutions of system (1)

In the following, we obtain the form of the solutions of the system (1). Firstly,
we recall that we mean by a well defined solution of the system (1), a solution
which satisfies:

k∏
j=1

xn−(3j−1)

an + bn

k∏
j=0

zn−3j

 ̸= 0, n ∈ N0,

k∏
j=1

yn−(3j−1)

cn + dn

k∏
j=0

xn−3j

 ̸= 0, n ∈ N0,

and
k∏

j=1

zn−(3j−1)

en + fn

k∏
j=0

yn−3j

 ̸= 0, n ∈ N0.

Putting

un =
1∏k

j=0 xn−3j

, vn =
1∏k

j=0 yn−3j

, wn =
1∏k

j=0 zn−3j

, n ∈ N0, (5)

then system (1) becomes
un+1 = anwn + bn, vn+1 = cnun + dn, wn+1 = envn + fn, n ∈ N0. (6)

From (6) we get
un+3 = an+2en+1cnun + an+2en+1dn + an+2fn+1 + bn+2, n ∈ N0, (7)
vn+3 = cn+2an+1envn + cn+2an+1fn + cn+2bn+1 + dn+2, n ∈ N0, (8)
wn+3 = en+2cn+1anwn + en+2cn+1bn + en+2dn+1 + fn+2, n ∈ N0. (9)

If we apply the decomposition of indices n → 3n+ j for n ∈ N0 and j ∈ {0, 1, 2},
to equations in (7)-(9), for n ∈ N0 they become

u3(n+1)+j = a3n+j+2e3n+j+1c3n+ju3n+j + a3n+j+2e3n+j+1d3n+j

+ a3n+j+2f3n+j+1 + b3n+j+2, (10)

v3(n+1)+j = c3n+j+2a3n+j+1e3n+jv3n+j + c3n+j+2a3n+j+1f3n+j

+ c3n+j+2b3n+j+1 + d3n+j+2, (11)

w3(n+1)+j = e3n+j+2c3n+j+1a3n+jw3n+j + e3n+j+2c3n+j+1b3n+j

+ e3n+j+2d3n+j+1 + f3n+j+2. (12)

Let u
(j)
n = u3n+j , v(j)n = v3n+j , w(j)

n = w3n+j for n ∈ N0 and j ∈ {0, 1, 2} and

A(j)
n = a3n+j+2e3n+j+1c3n+j ,

B(j)
n = a3n+j+2e3n+j+1d3n+j + a3n+j+2f3n+j+1 + b3n+j+2, (13)
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C(j)
n = c3n+j+2a3n+j+1e3n+j ,

D(j)
n = c3n+j+2a3n+j+1f3n+j + c3n+j+2b3n+j+1 + d3n+j+2, (14)

E(j)
n = e3n+j+2c3n+j+1a3n+j ,

F (j)
n = e3n+j+2c3n+j+1b3n+j + e3n+j+2d3n+j+1 + f3n+j+2. (15)

Then equations in (10)-(12) can be written as the following

u
(j)
n+1 = A(j)

n u(j)
n +B(j)

n , n ∈ N0, (16)

v
(j)
n+1 = C(j)

n v(j)n +D(j)
n , n ∈ N0, (17)

w
(j)
n+1 = E(j)

n w(j)
n + F (j)

n , n ∈ N0, (18)
for j ∈ {0, 1, 2}.
From (16)-(18) and Lemma 1.1, we have

u(j)
n =

n−1∏
j1=0

A
(j)
j1

u
(j)
0 +

n−1∑
j1=0

 n−1∏
i=j1+1

A
(j)
i

B
(j)
j1

, (19)

v(j)n =

n−1∏
j1=0

C
(j)
j1

 v
(j)
0 +

n−1∑
j1=0

 n−1∏
i=j1+1

C
(j)
i

D
(j)
j1

, (20)

w(j)
n =

n−1∏
j1=0

E
(j)
j1

w
(j)
0 +

n−1∑
j1=0

 n−1∏
i=j1+1

E
(j)
i

F
(j)
j1

, (21)

for n ∈ N0, j ∈ {0, 1, 2}. Then, from (13)-(15) we obtain

u3n+j =

n−1∏
j1=0

(a3j1+j+2e3j1+j+1c3j1+j)

uj

+

n−1∑
j1=0

 n−1∏
i=j1+1

(a3i+j+2e3i+j+1c3i+j)


× (a3j1+j+2e3j1+j+1d3j1+j + a3j1+j+2f3j1+j+1 + b3j1+j+2) , (22)

v3n+j =

n−1∏
j1=0

(c3j1+j+2a3j1+j+1e3j1+j)

 vj

+

n−1∑
j1=0

 n−1∏
i=j1+1

(c3i+j+2a3i+j+1e3i+j)


× (c3j1+j+2a3j1+j+1f3j1+j + c3j1+j+2b3j1+j+1 + d3j1+j+2) , (23)
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w3n+j =

n−1∏
j1=0

(e3j1+j+2c3j1+j+1a3j1+j)

wj

+

n−1∑
j1=0

 n−1∏
i=j1+1

(e3i+j+2c3i+j+1a3i+j)


× (e3j1+j+2c3j1+j+1b3j1+j + e3j1+j+2d3j1+j+1 + f3j1+j+2) . (24)

When the coefficients are constants i.e., an = a, bn = b, cn = c, dn = d,
en = e and fn = f , formulae (22)-(24) becomes

u3n+j =

{
(aec)

n
uj +

1−(aec)n

1−aec (aed+ af + b) , aec ̸= 1,

uj + (aed+ af + b)n, aec = 1,
n ∈ N0, (25)

v3n+j =

{
(cae)

n
vj +

1−(cae)n

1−cae (caf + cb+ d) , cae ̸= 1,

vj + (caf + cb+ d)n, cae = 1,
n ∈ N0, (26)

w3n+j =

{
(eca)

n
wj +

1−(eca)n

1−eca (ecb+ ed+ f) , eca ̸= 1,

wj + (ecb+ ed+ f)n, eca = 1,
n ∈ N0, (27)

for j ∈ {0, 1, 2}. From (5), we get

xn+3 =
un

un+3
xn−3k, n ∈ N0, (28)

yn+3 =
vn

vn+3
yn−3k, n ∈ N0, (29)

zn+3 =
wn

wn+3
zn−3k, n ∈ N0. (30)

from which it follows that

x(3k+3)n+i = xi−(3k+3)

n∏
s=0

u(3k+3)s+i−3

u(3k+3)s+i
, i = 3, 3k + 5, (31)

y(3k+3)n+i = yi−(3k+3)

n∏
s=0

v(3k+3)s+i−3

v(3k+3)s+i
, i = 3, 3k + 5, (32)

z(3k+3)n+i = zi−(3k+3)

n∏
s=0

w(3k+3)s+i−3

w(3k+3)s+i
, i = 3, 3k + 5, (33)

for n ∈ N0.
Since the integer i can be written in the form 3m+j, j ∈ {0, 1, 2}, then formulas
in (31)-(33) becomes as follows

x(3k+3)n+3m+j = x3(m−k−1)+j

n∏
s=0

u3((k+1)s+m−1)+j

u3((k+1)s+m)+j
, n ∈ N0, (34)
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y(3k+3)n+3m+j = y3(m−k−1)+j

n∏
s=0

v3((k+1)s+m−1)+j

v3((k+1)s+m)+j
, n ∈ N0, (35)

z(3k+3)n+3m+j = z3(m−k−1)+j

n∏
s=0

w3((k+1)s+m−1)+j

w3((k+1)s+m)+j
, n ∈ N0, (36)

where m = 1, k + 1.
For the constant case and using (25)-(27) in (34)-(36), for m = 1, k + 1, j ∈
{0, 1, 2}, n ∈ N0, we get

x(3k+3)n+3m+j = x3(m−k−1)+j

×
n∏

s=0

(aed+ af + b)xjxj−3 . . . xj−3k + (aec)
(k+1)s+m−1

M1

(aed+ af + b)xjxj−3 . . . xj−3k + (aec)
(k+1)s+m

M1

, (37)

y(3k+3)n+3m+j = y3(m−k−1)+j

×
n∏

s=0

(caf + cb+ d) yjyj−3 . . . yj−3k + (cae)
(k+1)s+m−1

N1

(caf + cb+ d) yjyj−3 . . . yj−3k + (cae)
(k+1)s+m

N1

, (38)

z(3k+3)n+3m+j = z3(m−k−1)+j

×
n∏

s=0

(ecb+ ed+ f) zjzj−3 . . . zj−3k + (eca)
(k+1)s+m−1

R1

(ecb+ ed+ f) zjzj−3 . . . zj−3k + (eca)
(k+1)s+m

R1

, (39)

where
M1 = (1− aec− (aed+ af + b)xjxj−3 . . . xj−3k),
N1 = (1− cae− (caf + cb+ d) yjyj−3 . . . yj−3k),
R1 = (1− eca− (ecb+ ed+ f) zjzj−3 . . . zj−3k), if eca ̸= 1, and

x(3k+3)n+3m+j = x3(m−k−1)+j

n∏
s=0

M2 ((k + 1) s+m− 1) + 1

M2 ((k + 1) s+m) + 1
, (40)

y(3k+3)n+3m+j = y3(m−k−1)+j

n∏
s=0

N2 ((k + 1) s+m− 1) + 1

N2 ((k + 1) s+m) + 1
, (41)

z(3k+3)n+3m+j = z3(m−k−1)+j

n∏
s=0

R2 ((k + 1) s+m− 1) + 1

R2 ((k + 1) s+m) + 1
, (42)

where M2 = xjxj−3 . . . xj−3k (aed+ af + b), N2 = yjyj−3 . . . yj−3k (caf + cb+ d),
R2 = zjzj−3 . . . zj−3k (ecb+ ed+ f), if eca = 1.

In summary, the solutions of the system (1) with variable coefficients are given
by formulas (34)-(36), where the sequences (un)n∈N0

, (vn)n∈N0
and (wn)n∈N0

are
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defined by formulas (22)-(24). However, for the constant case formulas (37)-(42)
describes explicitly the form of the solutions.

In the following result we describe the set of initial values for which the
solutions are not defined.

Theorem 2.1. Assume that an ̸= 0, bn ̸= 0, cn ̸= 0, dn ̸= 0, en ̸= 0, fn ̸= 0,
n ∈ N0. Then the forbidden set of the initial values for system (1) is the union
of the two sets {−→

X : x−j = 0 or y−j = 0 or z−j = 0, j = 0, 3k
}

and ∪
m∈N0

{ k∏
j=0

zn−3j =
1

αm
or

k∏
j=0

xn−3j =
1

βm
or

k∏
j=0

yn−3j =
1

γm
, where

αm := −
m∑

j=0

(
f3j+i−1 + e3j+i−1d3j+i−2 + e3j+i−1c3j+i−2b3j+i−3

e3j+i−1c3j+i−2a3j+i−3

)

×
j−1∏
l=0

1

e3l+i−1c3l+i−2a3l+i−3
̸= 0,

βm := −
m∑

j=0

(
b3j+i−1 + a3j+i−1f3j+i−2 + a3j+i−1e3j+i−2d3j+i−3

a3j+i−1e3j+i−2c3j+i−3

)

×
j−1∏
l=0

1

a3l+i−1e3l+i−2c3l+i−3
̸= 0,

γm := −
m∑

j=0

(
d3j+i−1 + c3j+i−1b3j+i−2 + c3j+i−1a3j+i−2f3j+i−3

c3j+i−1a3j+i−2e3j+i−3

)

×
j−1∏
l=0

1

c3l+i−1a3l+i−2e3l+i−3
̸= 0

}
. (43)

Proof. Let (xn, yn, zn)n≥−3k be a solution of system (1). If x−j = 0 or y−j = 0

or z−j = 0 for some j = 0, 3k, then xn, yn, zn can not be calculated. For
example, Suppose that z−j = 0 for some j = 0, 3k. We have the following cases:

(a) j ∈ {0, 3, ..., 3k}, in this case we get

x1 =
z0z−3...z−3k

x−2...x−3k+1 (a0 + b0z0z−3...z−3k)
,

clearly x1 will be not defined if x−2...x−3k+1 (a0 + b0z0z−3...z−3k) = 0
or x1 = 0. If x1 = 0, then

x4 =
z3z0...z−3k+3

x1...x−3k+4 (a3 + b3z3z0...z−3k+3)

will be not defined (division by x1 = 0).
(b) j ∈ {2, 5, ..., 3k − 1}, in this case we get

x2 =
z1z−2...z−3k+1

x−1...x−3k+2 (a1 + b1z1z−2...z−3k+1)
,
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clearly x2 will be not defined if x−1...x−3k+2 (a1 + b1z1z−2...z−3k+1) = 0
or x2 = 0. If x2 = 0, then

x5 =
z4z1...z−3k+4

x2...x−3k+5 (a4 + b4z4z1...z−3k+4)

will be not defined (division by x2 = 0).
(c) j ∈ {1, 4, ..., 3k − 2}, in this case we get

x3 =
z2z−1...z−3k+2

x0...x−3k+3 (a2 + b2z2z−1...z−3k+2)
,

clearly x3 will be not defined if x0...x−3k+3 (a2 + b2z2z−1...z−3k+2) = 0
or x3 = 0. If x3 = 0, then

x6 =
z5z2...z−3k+5

x3...x−3k+6 (a5 + b5z5z2...z−3k+5)

will be not defined (division by x3 = 0).
So, we incorporate the set{−→

X : x−j = 0 or y−j = 0, or z−j = 0, j = 0, 3k
}

in the forbidden set. Now, we suppose that xn ̸= 0, yn ̸= 0 and zn ̸= 0.
The solution (xn, yn, zn)n≥−3k of system (1) is not defined if and only if an +

bn
∏k

j=0 zn−3j = 0 or cn + dn
∏k

j=0 xn−3j = 0 or en + fn
∏k

j=0 yn−3j = 0 that is,
1∏k

j=0 zn−3j
= − bn

an
or 1∏k

j=0 xn−3j
= −dn

cn
or 1∏k

j=0 yn−3j
= − fn

en
, for some n ∈ N0,

are satisfied(Here we consider that an ̸= 0, cn ̸= 0 and en ̸= 0 for every n ∈
N0). From this and the substitution un = 1∏k

j=0 xn−3j
, vn = 1∏k

j=0 yn−3j
, wn =

1∏k
j=0 zn−3j

, we get

u3m+i = −d3m+i

c3m+i
, v3m+i = −f3m+i

e3m+i
, wkm+i = − b3m+i

a3m+i
, (44)

for some m ∈ N0 and i ∈ {0, 1, 2}. Hence, we can determine the forbidden set of
the initial values for system (1) by using the substitution un = 1∏k

j=0 xn−3j
, vn =

1∏k
j=0 yn−3j

, wn = 1∏k
j=0 zn−3j

. Now, we consider the functions

f3m+i (t) := a3m+it+ b3m+i,

h3m+i (t) := c3m+it+ d3m+i,

g3m+i (t) := e3m+it+ f3m+i, (45)
for m ∈ N0, i ∈ {0, 1, 2}, which correspond to the equations of (6). From (44)
and (45), we can write

u3m+i = f3m+i−1 ◦ g3m+i−2 ◦ h3(m−1)+i · · · ◦ fi−1 ◦ gi−2 ◦ hi−3 (ui−3) , (46)

v3m+i = h3m+i−1 ◦ f3m+i−2 ◦ g3(m−1)+i · · · ◦ hi−1 ◦ fi−2 ◦ gi−3 (vi−3) , (47)
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w3m+i = g3m+i−1 ◦ h3m+i−2 ◦ f3(m−1)+i · · · ◦ gi−1 ◦ hi−2 ◦ fi−3 (wi−3) , (48)
where m ∈ N0, and i ∈ {3, 4, 5}. By using (44) and implicit forms (46)-(48) and
considering
f−1
3m+i (0) = − b3m+i

a3m+i
, h−1

3m+i (0) = −d3m+i

c3m+i
, g−1

3m+i (0) = − f3m+i

e3m+i
, for m ∈ N0 and

i ∈ {3, 4, 5}, we have
ui−3 = h−1

i−3 ◦ g
−1
i−2 ◦ f

−1
i−1 ◦ · · · ◦ h

−1
3(m−1)+i ◦ g

−1
3m+i−2 ◦ f

−1
3m+i−1 (0) , (49)

vi−3 = g−1
i−3 ◦ f

−1
i−2 ◦ h

−1
i−1 ◦ · · · ◦ g

−1
3(m−1)+i ◦ f

−1
3m+i−2 ◦ h

−1
3m+i−1 (0) , (50)

wi−3 = f−1
i−3 ◦ h

−1
i−2 ◦ g

−1
i−1 ◦ · · · ◦ f

−1
3(m−1)+i ◦ h

−1
3m+i−2 ◦ g

−1
3m+i−1 (0) , (51)

where f−1
3m+i (t) =

t−b3m+i

a3m+i
, h−1

3m+i (t) =
t−d3m+i

c3m+i
, g−1

3m+i (t) =
t−f3m+i

e3m+i
, m ∈ N0,

i ∈ {3, 4, 5}. From (49)-(51), we obtain

ui−3 = −
m∑
j=0

(
b3j+i−1 + a3j+i−1f3j+i−2 + a3j+i−1e3j+i−2d3j+i−3

a3j+i−1e3j+i−2c3j+i−3

)

×
j−1∏
l=0

1

a3l+i−1e3l+i−2c3l+i−3

vi−3 = −
m∑
j=0

(
d3j+i−1 + c3j+i−1b3j+i−2 + c3j+i−1a3j+i−2f3j+i−3

c3j+i−1a3j+i−2e3j+i−3

)

×
j−1∏
l=0

1

c3l+i−1a3l+i−2e3l+i−3

wi−3 = −
m∑
j=0

(
f3j+i−1 + e3j+i−1d3j+i−2 + e3j+i−1c3j+i−2b3j+i−3

e3j+i−1c3j+i−2a3j+i−3

)

×
j−1∏
l=0

1

e3l+i−1c3l+i−2a3l+i−3

for some m ∈ N0 and i ∈ {3, 4, 5}. This means that if one of the conditions in
(49)-(51) holds, then m-th iteration or (m+ 1)-th iteration in system (1) can
not be calculated.

�
In the the following result, we show the existence of 3k+3 periodic solutions

for the system (1) with constant coefficients.

Theorem 2.2. Assume that (aed+ af + b)x0x−3...x−3k = (caf + cb+ d) y0y−3...y−3k

= (ecb+ ed+ f) z0z−3...z−3k = 1− aec and
(1− aec) (aed+ af + b) (caf + cb+ d) (ecb+ ed+ f) ̸= 0. Then all (well de-
fined) solutions of system (1) are periodic with period 3k + 3.
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Proof. From the assumptions and (5), we have

u0 =
1

x0x−3...x−3k
=

aed+ af + b

1− aec
, v0 =

1

y0y−3...y−3k
=

caf + cb+ d

1− aec
,

w0 =
1

z0z−3...z−3k
=

ecb+ ed+ f

1− aec
.

From this and (6), it follows that

u1 = aw0 + b = a

(
ecb+ ed+ f

1− aec

)
+ b = u0,

v1 = cu0 + d = c

(
aed+ af + b

1− aec

)
+ d = v0,

w1 = ev0 + f = e

(
caf + cb+ d

1− aec

)
+ f = w0,

and by induction we get,

un = · · · = u0 =
aed+ af + b

1− aec
, vn = · · · = v0 =

caf + cb+ d

1− aec
,

wn = · · · = w0 =
ecb+ ed+ f

1− aec
, n ∈ N0. (52)

From (28)-(30) and (52), we get
xn+3 = xn−3k, yn+3 = yn−3k, zn+3 = zn−3k, n ∈ N0,

that is, the solutions are periodic with period 3k + 3. �

Remark 2.1. (a): Using the change of variables (5), the following system

xn+1 =

∏k
j=0 yn−3j∏k

j=1 xn−(3j−1)

(
an + bn

∏k
j=0 yn−3j

) ,
yn+1 =

∏k
j=0 zn−3j∏k

j=1 yn−(3j−1)

(
cn + dn

∏k
j=0 zn−3j

) ,
zn+1 =

∏k
j=0 xn−3j∏k

j=1 zn−(3j−1)

(
en + fn

∏k
j=0 xn−3j

) , n ∈ N0,

can be solved, prior minor changes in the coefficients in the correspond-
ing linear system, in the same manner as in solving system (1).

(b): The solutions of the difference equation

xn+1 =

∏k
j=0 xn−3j∏k

j=1 xn−(3j−1)

(
an + bn

∏k
j=0 xn−3j

) , n ∈ N0,

can be obtained from system (1) by taking z−i = y−i = x−i, i = 0, 3k,
an = cn = en, n ∈ N0 and bn = dn = fn, n ∈ N0.
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3. Asymptotic Behavior of Well-Defined Solutions of System (1) with
Constants Coefficients

In this section, we derive some results on asymptotic behavior of well-defined
solutions of system (1) with constants coefficients.
We will use well-known asymptotic formulas as follows:

ln (1 + x) = x− x2

2
+O

(
x3
)
,

(1 + x)
−1

= 1− x+O
(
x2
)
, (53)

for x → 0, where O is the Landau ”big-oh” symbol.

Theorem 3.1. Assume that aec = 1, (aed+ af + b) ̸= 0, (caf + cb+ d) ̸= 0
and (ecb+ ed+ f) ̸= 0, x−iy−iz−i ̸= 0 for i = 0, 3k. Then, every well-defined
solution (xn, yn, zn)n≥−3k of system (1) converges to zero.

Proof. By formulas (40)-(42), we get

x(3k+3)n+3m+j

= x3(m−k−1)+j

n∏
s=0

M2 ((k + 1) s+m− 1) + 1

M2 ((k + 1) s+m) + 1

= x3(m−k−1)+j

n∏
s=0

(
1− M2

M2 ((k + 1) s+m) + 1

)

= x3(m−k−1)+jC1 (n0)

n∏
s=n0+1

(
1− 1

(k + 1) s
+O

(
1

s2

))

= x3(m−k−1)+jC1 (n0) exp

(
n∑

s=n0+1

ln

(
1− 1

(k + 1) s
+O

(
1

s2

)))

= x3(m−k−1)+jC1 (n0) exp

(
−1

k + 1

n∑
s=n0+1

(
1

s
+O

(
1

s2

)))
, (54)

where C1 (n0) =
∏n0

s=0

(
1− M2

M2((k+1)s+m)+1

)
, m = 1, k + 1 and j ∈ {0, 1, 2},

y(3k+3)n+3m+j

= y3(m−k−1)+j

n∏
s=0

N2 ((k + 1) s+m− 1) + 1

N2 ((k + 1) s+m) + 1

= y3(m−k−1)+j

n∏
s=0

(
1− N2

N2 ((k + 1) s+m) + 1

)

= y3(m−k−1)+jC2 (n0)

n∏
s=n0+1

(
1− 1

(k + 1) s
+O

(
1

s2

))
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= y3(m−k−1)+jC2 (n0) exp

(
n∑

s=n0+1

ln

(
1− 1

(k + 1) s
+O

(
1

s2

)))

= y3(m−k−1)+jC2 (n0) exp

(
−1

k + 1

n∑
s=n0+1

(
1

s
+O

(
1

s2

)))
, (55)

where C2 (n0) =
∏n0

s=0

(
1− N2

N2((k+1)s+m)+1

)
, m = 1, k + 1 and j ∈ {0, 1, 2},

z(3k+3)n+3m+j

= z3(m−k−1)+j

n∏
s=0

R2 ((k + 1) s+m− 1) + 1

R2 ((k + 1) s+m) + 1

= z3(m−k−1)+j

n∏
s=0

(
1− R2

R2 ((k + 1) s+m) + 1

)

= z3(m−k−1)+jC3 (n0)

n∏
s=n0+1

(
1− 1

(k + 1) s
+O

(
1

s2

))

= z3(m−k−1)+jC3 (n0) exp

(
n∑

s=n0+1

ln

(
1− 1

(k + 1) s
+O

(
1

s2

)))

= z3(m−k−1)+jC3 (n0) exp

(
−1

k + 1

n∑
s=n0+1

(
1

s
+O

(
1

s2

)))
, (56)

where C3 (n0) =
∏n0

s=0

(
1− R2

R2((k+1)s+m)+1

)
, m = 1, k + 1 and j ∈ {0, 1, 2}.

Letting n → ∞ in (54)-(56), using the fact that
∑n

s=n0+1
1
s → ∞ as n → ∞

and that the series
∑∞

s=n0+1 O
(

1
s2

)
converges to zero. Therefore, this result can

be seen easily from (54)-(56).
�

Theorem 3.2. Assume that |aec| < 1, bdf ̸= 0, xjxj−3 . . . xj−3k ̸= 1−aec
aed+af+b ,

yjyj−3 . . . yj−3k ̸= 1−aec
caf+cb+d , zjzj−3 . . . zj−3k ̸= 1−aec

ecb+ed+f , x−iy−iz−i ̸= 0 for
i = 0, 3k. Then, every well-defined solution (xn, yn, zn)n≥−3k of system (1)
converges to a not necessarily (3k + 3)-periodic solution of the system.

Proof. We know that in this case well-defined solutions of the system are given
by formulas (37)-(39). By using these formulas and asymptotic formulas (53)
we have that for sufficiently large n1

x(3k+3)n+3m+j = x3(m−k−1)+j

×
n∏

s=0

(aed+ af + b)xjxj−3 . . . xj−3k + (aec)
(k+1)s+m−1

M1

(aed+ af + b)xjxj−3 . . . xj−3k + (aec)
(k+1)s+m

M1

= x3(m−k−1)+jC1 (n1)
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×
n∏

s=n1+1

(
1 +

(aec)
(k+1)s+m

(1− aec)M1

(aed+ af + b)xjxj−3 . . . xj−3k
+O

(
(aec)

2ks
))

= x3(m−k−1)+jC1 (n1)

× exp

(
(1− aec)

M1

(aed+ af + b)xjxj−3 . . . xj−3k

×
n∑

s=n1+1

(
(aec)

(k+1)s+m
+O

(
(aec)

2ks
)))

(57)

where C1 (n1) =
∏n1

s=0
(aed+af+b)xjxj−3...xj−3k+(aec)(k+1)s+m−1M1

(aed+af+b)xjxj−3...xj−3k+(aec)(k+1)s+mM1
, m = 1, k + 1

and j ∈ {0, 1, 2},

y(3k+3)n+3m+j = y3(m−k−1)+j

×
n∏

s=0

(caf + cb+ d) yjyj−3 . . . yj−3k + (cae)
(k+1)s+m−1

N1

(caf + cb+ d) yjyj−3 . . . yj−3k + (cae)
(k+1)s+m

N1

= y3(m−k−1)+jC2 (n1)

×
n∏

s=n1+1

(
1 +

(cae)
(k+1)s+m

(1− cae)N1

(caf + cb+ d) yjyj−3 . . . yj−3k
+O

(
(cae)

2ks
))

= y3(m−k−1)+jC2 (n1)

× exp

(
(1− cae)

N1

(caf + cb+ d) yjyj−3 . . . yj−3k

×
n∑

s=n1+1

(
(cae)

(k+1)s+m
+O

(
(cae)

2ks
)))

(58)

where C2 (n1) =
∏n1

s=0
(caf+cb+d)yjyj−3...yj−3k+(cae)(k+1)s+m−1N1

(caf+cb+d)yjyj−3...yj−3k+(cae)(k+1)s+mN1
, m = 1, k + 1

and j ∈ {0, 1, 2},

z(3k+3)n+3m+j = z3(m−k−1)+j

×
n∏

s=0

(ecb+ ed+ f) zjzj−3 . . . zj−3k + (eca)
(k+1)s+m−1

R1

(ecb+ ed+ f) zjzj−3 . . . zj−3k + (eca)
(k+1)s+m

R1

= z3(m−k−1)+jC3 (n1)

×
n∏

s=n1+1

(
1 +

(eca)
(k+1)s+m

(1− eca)R1

(ecb+ ed+ f) zjzj−3 . . . zj−3k
+O

(
(eca)

2ks
))

= z3(m−k−1)+jC3 (n1)

× exp

(
(1− eca)

R1

(ecb+ ed+ f) zjzj−3 . . . zj−3k
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×
n∑

s=n1+1

(
(eca)

(k+1)s+m
+O

(
(eca)

2ks
)))

(59)

where C3 (n1) =
∏n1

s=0
(ecb+ed+f)zjzj−3...zj−3k+(eca)(k+1)s+m−1R1

(ecb+ed+f)zjzj−3...zj−3k+(eca)(k+1)s+mR1
, m = 1, k + 1

and j ∈ {0, 1, 2}.
From (57)-(59) and since |aec| < 1, it easily follows that the sequences(
x(3k+3)n+3m+j

)
n∈N0

,
(
y(3k+3)n+3m+j

)
n∈N0

,
(
z(3k+3)n+3m+j

)
n∈N0

are conver-
gent for each m = 1, k + 1 and j ∈ {0, 1, 2}, from which the theorem follows. �

Theorem 3.3. Assume that |aec| > 1, bdf ̸= 0, xjxj−3 . . . xj−3k ̸= 1−aec
aed+af+b ,

yjyj−3 . . . yj−3k ̸= 1−aec
caf+cb+d , zjzj−3 . . . zj−3k ̸= 1−aec

ecb+ed+f , x−iy−iz−i ̸= 0 for
i = 0, 3k. Then, every well-defined solution (xn, yn, zn)n≥−3k of system (1)
converges to zero.

Proof. In this case, well-defined solutions of system (1) are also given by formulas
(37)-(39). Further note that for each m = 1, k + 1 and j ∈ {0, 1, 2} holds

lims→∞
(aed+ af + b)xjxj−3 . . . xj−3k + (aec)

(k+1)s+m−1
M1

(aed+ af + b)xjxj−3 . . . xj−3k + (aec)
(k+1)s+m

M1

=
1

aec
. (60)

Now note that 1
|aec| < 1, due to the assumption |aec| > 1. Using this fact and

(60), it follows that for sufficiently large s, say s ≥ n2 we get∣∣∣∣∣ (aed+ af + b)xjxj−3 . . . xj−3k + (aec)
(k+1)s+m−1

M1

(aed+ af + b)xjxj−3 . . . xj−3k + (aec)
(k+1)s+m

M1

∣∣∣∣∣
≤ 1

2

(
1 +

1

|aec|

)
. (61)

From this, we get

∣∣x(3k+3)n+3m+j

∣∣ = ∣∣x3(m−k−1)+j

∣∣C1 (n2)

×
n∏

s=n2+1

∣∣∣∣∣ (aed+ af + b)xjxj−3 . . . xj−3k + (aec)
(k+1)s+m−1

M1

(aed+ af + b)xjxj−3 . . . xj−3k + (aec)
(k+1)s+m

M1

∣∣∣∣∣
≤

∣∣x3(m−k−1)+j

∣∣C1 (n2)

n∏
s=n2+1

(
1

2

(
1 +

1

|aec|

))

=
∣∣x3(m−k−1)+j

∣∣C1 (n2)

(
1

2

(
1 +

1

|aec|

))n−n2

→ 0 (62)

as n → ∞, where
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C1 (n2) =

n2∏
s=0

∣∣∣∣∣ (aed+ af + b)xjxj−3 . . . xj−3k + (aec)
(k+1)s+m−1

M1

(aed+ af + b)xjxj−3 . . . xj−3k + (aec)
(k+1)s+m

M1

∣∣∣∣∣ ,
lims→∞

(caf + cb+ d) yjyj−3 . . . yj−3k + (cae)
(k+1)s+m−1

N1

(caf + cb+ d) yjyj−3 . . . yj−3k + (cae)
(k+1)s+m

N1

=
1

cae
. (63)

Now note that 1
|cae| < 1, due to the assumption |cae| > 1. Using this fact and

(63), it follows that for sufficiently large s, say s ≥ n2 we get

∣∣∣∣∣ (caf + cb+ d) yjyj−3 . . . yj−3k + (cae)
(k+1)s+m−1

N1

(caf + cb+ d) yjyj−3 . . . yj−3k + (cae)
(k+1)s+m

N1

∣∣∣∣∣
≤ 1

2

(
1 +

1

|cae|

)
. (64)

From this, we get

∣∣y(3k+3)n+3m+j

∣∣ = ∣∣y3(m−k−1)+j

∣∣C2 (n2)

×
n∏

s=n2+1

∣∣∣∣∣ (caf + cb+ d) yjyj−3 . . . yj−3k + (cae)
(k+1)s+m−1

N1

(caf + cb+ d) yjyj−3 . . . yj−3k + (cae)
(k+1)s+m

N1

∣∣∣∣∣
≤

∣∣y3(m−k−1)+j

∣∣C2 (n2)

n∏
s=n2+1

(
1

2

(
1 +

1

|cae|

))

=
∣∣y3(m−k−1)+j

∣∣C2 (n2)

(
1

2

(
1 +

1

|cae|

))n−n2

→ 0 (65)

as n → ∞, where

C2 (n2) =

n2∏
s=0

∣∣∣∣∣ (caf + cb+ d) yjyj−3 . . . yj−3k + (cae)
(k+1)s+m−1

N1

(caf + cb+ d) yjyj−3 . . . yj−3k + (cae)
(k+1)s+m

N1

∣∣∣∣∣ ,
lims→∞

(ecb+ ed+ f) zjzj−3 . . . zj−3k + (eca)
(k+1)s+m−1

R1

(ecb+ ed+ f) zjzj−3 . . . zj−3k + (eca)
(k+1)s+m

R1

=
1

eca
. (66)

Now note that 1
|eca| < 1, due to the assumption |eca| > 1. Using this fact and

(66), it follows that for sufficiently large s, say s ≥ n2 we get
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∣∣∣∣∣ (ecb+ ed+ f) zjzj−3 . . . zj−3k + (eca)
(k+1)s+m−1

R1

(ecb+ ed+ f) zjzj−3 . . . zj−3k + (eca)
(k+1)s+m

R1

∣∣∣∣∣
≤ 1

2

(
1 +

1

|eca|

)
. (67)

From this, we get

∣∣z(3k+3)n+3m+j

∣∣ = ∣∣z3(m−k−1)+j

∣∣C3 (n2)

×
n∏

s=n2+1

∣∣∣∣∣ (ecb+ ed+ f) zjzj−3 . . . zj−3k + (eca)
(k+1)s+m−1

R1

(ecb+ ed+ f) zjzj−3 . . . zj−3k + (eca)
(k+1)s+m

R1

∣∣∣∣∣
≤

∣∣z3(m−k−1)+j

∣∣C3 (n2)

n∏
s=n2+1

(
1

2

(
1 +

1

|eca|

))

=
∣∣z3(m−k−1)+j

∣∣C3 (n2)

(
1

2

(
1 +

1

|eca|

))n−n2

→ 0 (68)

as n → ∞, where

C3 (n2) =

n2∏
s=0

∣∣∣∣∣ (ecb+ ed+ f) zjzj−3 . . . zj−3k + (eca)
(k+1)s+m−1

R1

(ecb+ ed+ f) zjzj−3 . . . zj−3k + (eca)
(k+1)s+m

R1

∣∣∣∣∣ ,
from which the theorem follows. �
Now, we investigate the asymptotic behavior of solution of system (1) when

aec = −1, (aed+ af + b) ̸= 0, (caf + cb+ d) ̸= 0 and (ecb+ ed+ f) ̸= 0,
x−iy−iz−i ̸= 0 for i = 0, 3k, from (37), (38) and (39) by employing the following
formulas

x(3k+3)n+3m+j = x3(m−k−1)+j

×
n∏

s=0

M2 + (−1)
(k+1)s+m−1

(2− (aed+ af + b)xjxj−3 . . . xj−3k)

M2 + (−1)
(k+1)s+m

(2− (aed+ af + b)xjxj−3 . . . xj−3k)
, (69)

y(3k+3)n+3m+j = y3(m−k−1)+j

×
n∏

s=0

N2 + (−1)
(k+1)s+m−1

(2− (caf + cb+ d) yjyj−3 . . . yj−3k)

N2 + (−1)
(k+1)s+m

(2− (caf + cb+ d) yjyj−3 . . . yj−3k)
, (70)

z(3k+3)n+3m+j = z3(m−k−1)+j

×
n∏

s=0

R2 + (−1)
(k+1)s+m−1

(2− (ecb+ ed+ f) zjzj−3 . . . zj−3k)

R2 + (−1)
(k+1)s+m

(2− (ecb+ ed+ f) zjzj−3 . . . zj−3k)
, (71)

for every n ∈ N0, m = 1, k + 1 and j ∈ {0, 1, 2}.
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Theorem 3.4. Suppose that aec = −1, (aed+ af + b) ̸= 0, (caf + cb+ d) ̸= 0
and (ecb+ ed+ f) ̸= 0, x−iy−iz−i ̸= 0 for i = 0, 3k, m = 1, k + 1 and
j ∈ {0, 1, 2}. Then the following statements hold.

(a): If xjxj−3 . . . xj−3k = 2
aed+af+b , then the sequence (xn)n≥−3k is

(3k + 3)-periodic.
(b): If ((k + 1) s+m) is even and |(aed+ af + b)xjxj−3 . . . xj−3k − 1| < 1,

then x(3k+3)n+3m+j → 0, as n → ∞.
(c): If ((k + 1) s+m) is even and |(aed+ af + b)xjxj−3 . . . xj−3k − 1| > 1,

then
∣∣x(3k+3)n+3m+j

∣∣→ ∞, as n → ∞.
(d): If ((k + 1) s+m) is even and (aed+ af + b)xjxj−3 . . . xj−3k−1 = 1, then

the sequence (xn)n≥−3k is (3k + 3)-periodic.
(e): If ((k + 1) s+m) is even and (aed+ af + b)xjxj−3 . . . xj−3k − 1 = −1,

then the sequence (xn)n≥−3k is (6k + 6)-periodic.
(f): If ((k + 1) s+m) is odd and

∣∣∣ 1
(aed+af+b)xjxj−3...xj−3k−1

∣∣∣ < 1, then
x(3k+3)n+3m+j → 0, as n → ∞.

(g): If ((k + 1) s+m) is odd and
∣∣∣ 1
(aed+af+b)xjxj−3...xj−3k−1

∣∣∣ > 1, then∣∣x(3k+3)n+3m+j

∣∣→ ∞, as n → ∞.
(h): If ((k + 1) s+m) is odd and 1

(aed+af+b)xjxj−3...xj−3k−1 = 1, then the se-
quence (xn)n≥−3k is (3k + 3)-periodic.

(i): If ((k + 1) s+m) is odd and 1
(aed+af+b)xjxj−3...xj−3k−1 = −1, then the se-

quence (xn)n≥−3k is (6k + 6)-periodic.
(j): If yjyj−3 . . . yj−3k = 2

caf+cb+d , then the sequence (yn)n≥−3k is
(3k + 3)-periodic.

(k): If ((k + 1) s+m) is even and |(caf + cb+ d) yjyj−3 . . . yj−3k − 1| < 1, then
y(3k+3)n+3m+j → 0, as n → ∞.

(l): If ((k + 1) s+m) is even and |(caf + cb+ d) yjyj−3 . . . yj−3k − 1| > 1, then∣∣y(3k+3)n+3m+j

∣∣→ ∞, as n → ∞.
(m): If ((k + 1) s+m) is even and (caf + cb+ d) yjyj−3 . . . yj−3k −1 = 1, then

the sequence (yn)n≥−3k is (3k + 3)-periodic.
(n): If ((k + 1) s+m) is even and (caf + cb+ d) yjyj−3 . . . yj−3k−1 = −1, then

the sequence (yn)n≥−3k is (6k + 6)-periodic.
(o): If ((k + 1) s+m) is odd and

∣∣∣ 1
(caf+cb+d)yjyj−3...yj−3k−1

∣∣∣ < 1, then
y(3k+3)n+3m+j → 0, as n → ∞.

(p): If ((k + 1) s+m) is odd and
∣∣∣ 1
(caf+cb+d)yjyj−3...yj−3k−1

∣∣∣ > 1, then∣∣y(3k+3)n+3m+j

∣∣→ ∞, as n → ∞.
(q): If ((k + 1) s+m) is odd and 1

(caf+cb+d)yjyj−3...yj−3k−1 = 1, then the se-
quence (yn)n≥−3k is (3k + 3)-periodic.

(r): If ((k + 1) s+m) is odd and 1
(caf+cb+d)yjyj−3...yj−3k−1 = −1, then the se-

quence (yn)n≥−3k is (6k + 6)-periodic.
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(s): If zjzj−3 . . . zj−3k = 2
ecb+ed+f , then the sequence (zn)n≥−3k is (3k + 3)-

periodic.
(t): If ((k + 1) s+m) is even and |(ecb+ ed+ f) zjzj−3 . . . zj−3k − 1| < 1, then

z(3k+3)n+3m+j → 0, as n → ∞.
(u): If ((k + 1) s+m) is even and |(ecb+ ed+ f) zjzj−3 . . . zj−3k − 1| > 1, then∣∣z(3k+3)n+3m+j

∣∣→ ∞, as n → ∞.
(v): If ((k + 1) s+m) is even and (ecb+ ed+ f) zjzj−3 . . . zj−3k − 1 = 1, then

the sequence (zn)n≥−3k is (3k + 3)-periodic.
(w): If ((k + 1) s+m) is even and (ecb+ ed+ f) zjzj−3 . . . zj−3k − 1 = −1,

then the sequence (zn)n≥−3k is (6k + 6)-periodic.
(x): If ((k + 1) s+m) is odd and

∣∣∣ 1
(ecb+ed+f)zjzj−3...zj−3k−1

∣∣∣ < 1, then
z(3k+3)n+3m+j → 0, as n → ∞.

(y): If ((k + 1) s+m) is odd and
∣∣∣ 1
(ecb+ed+f)zjzj−3...zj−3k−1

∣∣∣ > 1, then∣∣z(3k+3)n+3m+j

∣∣→ ∞, as n → ∞.
(z): If ((k + 1) s+m) is odd and 1

(ecb+ed+f)zjzj−3...zj−3k−1 = 1, then the se-
quence (zn)n≥−3k is (3k + 3)-periodic.

(z’): If ((k + 1) s+m) is odd and 1
(ecb+ed+f)xjxj−3...xj−3k−1 = −1, then the

sequence (zn)n≥−3k is (6k + 6)-periodic.

Proof. Here, we will prove the items (a)-(i) since (j)-(r) and (s)-(z’) can be proved
similarly and are omitted.
(a): This result can be seen easily from the assumption
xjxj−3 . . . xj−3k = 2

aed+af+b and some simple calculation from equation (69).
(b)-(e): Assume that ((k + 1) s+m) is even. From equation (69) we get

x(3k+3)n+3m+j = x3(m−k−1)+j

×
n∏

s=0

M2 + (−1)
(k+1)s+m−1

(2− (aed+ af + b)xjxj−3 . . . xj−3k)

M2 + (−1)
(k+1)s+m

(2− (aed+ af + b)xjxj−3 . . . xj−3k)

= x3(m−k−1)+j ((aed+ af + b)xjxj−3 . . . xj−3k − 1)
n+1 (72)

From (72), the results can be seen easily.
(f)-(i): Assume that ((k + 1) s+m) is odd. From equation (69) we get

x(3k+3)n+3m+j = x3(m−k−1)+j

×
n∏

s=0

M2 + (−1)
(k+1)s+m−1

(2− (aed+ af + b)xjxj−3 . . . xj−3k)

M2 + (−1)
(k+1)s+m

(2− (aed+ af + b)xjxj−3 . . . xj−3k)

= x3(m−k−1)+j

(
1

(aed+ af + b)xjxj−3 . . . xj−3k − 1

)n+1

(73)

From (73), the results can be seen easily.
�
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Theorem 3.5. Assume that a = c = e = 0 or xjxj−3 . . . xj−3k = 1−aec
aed+af+b ,

yjyj−3 . . . yj−3k = 1−aec
caf+cb+d , zjzj−3 . . . zj−3k = 1−aec

ecb+ed+f , x−iy−iz−i ̸= 0 for
i = 0, 3k. Then, every well-defined solution (xn, yn, zn)n≥−3k of system (1)
converges to a not necessarily (3k + 3)-periodic solution of the system.

Proof. By formulas (37)-(39), we have

x(3k+3)n+3m+j = x3(m−k−1)+j

n∏
s=0

(aed+ af + b)xjxj−3 . . . xj−3k

(aed+ af + b)xjxj−3 . . . xj−3k

= x3(m−k−1)+j , n ∈ N0, (74)

y(3k+3)n+3m+j = y3(m−k−1)+j

n∏
s=0

(caf + cb+ d) yjyj−3 . . . yj−3k

(caf + cb+ d) yjyj−3 . . . yj−3k

= y3(m−k−1)+j , n ∈ N0, (75)

z(3k+3)n+3m+j = z3(m−k−1)+j

n∏
s=0

(ecb+ ed+ f) zjzj−3 . . . zj−3k

(ecb+ ed+ f) zjzj−3 . . . zj−3k

= z3(m−k−1)+j , n ∈ N0, (76)

for each m = 1, k + 1 and j ∈ {0, 1, 2}, Proof of the theorem can be seen easily
from (74)-(76). �

Finally we investigate the asymptotic behavior of solution of equations (37)-
(42) when aec ̸= 0, b = d = f = 0, for each m = 1, k + 1 and j ∈ {0, 1, 2}, by
employing the following formulas, for the case aec ̸= 1,

x(3k+3)n+3m+j = x3(m−k−1)+j

n∏
s=0

1

aec
, n ∈ N0, (77)

y(3k+3)n+3m+j = y3(m−k−1)+j

n∏
s=0

1

cae
, n ∈ N0, (78)

z(3k+3)n+3m+j = z3(m−k−1)+j

n∏
s=0

1

eca
, n ∈ N0, (79)

while for aec = 1,
x(3k+3)n+3m+j = x3(m−k−1)+j , n ∈ N0, (80)

y(3k+3)n+3m+j = y3(m−k−1)+j , n ∈ N0, (81)
z(3k+3)n+3m+j = z3(m−k−1)+j , n ∈ N0, (82)

By using above formulas, we give the following theorem. Proof of the theorem
can be seen easily from (77)-(82).
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Theorem 3.6. Suppose that aec ̸= 0, b = d = f = 0, for each m = 1, k + 1 and
j ∈ {0, 1, 2}. Then the next statements hold.
(a): If |aec| > 1, then xn → 0, yn → 0, zn → 0, as n → ∞.
(b): If |aec| < 1, then |xn| → ∞, |yn| → ∞, |zn| → ∞, as n → ∞.
(c): If aec = 1, then the sequences (xn)n≥−3k, (yn)n≥−3k, (zn)n≥−3k, are

(3k + 3)-periodic.
(d): If aec = −1, then the sequences (xn)n≥−3k, (yn)n≥−3k, (zn)n≥−3k, are

(6k + 6)-periodic.

Acknowledgement: Authors are thankful to the editor and reviewers for
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