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1. INTRODUCTION

In this study, we will consider the following one dimensional modified equal width wave (MEW) equa�
tion

(1)

with the boundary conditions

(2)

and the initial condition

where t is time, x is the space coordinate, μ is a positive parameter, U(x, t) is wave amplitude and f(x) is a
prescribed function. The equal width wave (EW) equation, which is an alternative description of the non�
linear dispersive waves to the more usual Korteweg�de Vries (KdV) equation is a model nonlinear partial
differential equation used for the simulation of one�dimensional non�linear waves propagating in disper�
sive media. Benjamin, Bona and Mahoney in [1] proposed the regularized long wave (RLW) equation to
be a model for the same physical phenomena equally well as the KdV equation. MEW equation, which we
discuss here, is related with the modified regularized long wave (MRLW) equation(see [2]) and modified
Korteweg�de Vries (MKdV) equation (see [3]) and is based upon the equal width wave (EW) equation.
This equation has solitary wave solutions with both positive and negative amplitudes, all of which have the
same width. The MEW equation is a non�linear wave equation with cubic nonlinearity with a pulse�like
solitary wave solution (see [4]). Analytical solutions of the MEW equation are known with only a restricted
set of boundary and initial conditions. Therefore, many numerical methods have been used for solving the
MEW equation with various boundary and initial conditions. Wazwaz in [5] investigated the MEW equa�
tion and two of its variants by the tanh and the sine�cosine methods. Zaki (see [6, 7]) considered the sol�
itary wave interactions for the MEW equation by Petrov–Galerkin method using quintic B�spline finite
elements and obtained the numerical solution of the EW equation by using the least�squares method. Vari�

Ut 3U2Ux μUxxt–+ 0,=
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ational iteration method is introduced to solve the MEW equation by J. Lu (see [8]). S.T. Mohyud�Din
et al. solved the MEW equation numerically with homotopy perturbation method in [9[. Esen in [10, 11]
applied a lumped Galerkin method based on quadratic B�spline finite elements have been used for solving
the EW and MEW equation. A. Esen and S. Kutluay in [12] studied a linearized implicit finite difference
method in solving the MEW equation. Saka in [13] proposed algorithms for the numerical solution of the
MEW equation using quintic B�spline collocation method. T. Geyikli and S.B.G. Karakoç (see [14, 15])
solved the MEW equation by a collocation method using septic B�spline finite elements and using a
Petrov–Galerkin finite element method with weight functions quadratic and element shape functions are
cubic B�splines, Also S.B.G. Karakoc, solved the equation numerically with finite element methods
(see 16]). D.J. Evans and K.R. Raslan in [17] studied the generalized EW equation by using collocation
method based on quadratic B�splines to obtain the numerical solutions of a single solitary waves, and the
birth of solitons. In this paper, we solve the MEW equation numerically by Subdomain finite element
method using quartic B�splines. The performance and accuracy of the proposed method have been tested
on two problems: the motion of a single solitary wave and the interaction of two solitary waves. A linear
stability analysis based on a Fourier method shows that the numerical scheme is unconditionally stable.

2. QUARTIC B�SPLINE SOLUTION

For the numerical treatment, the solution domain of the problem is restricted over an interval a ≤ x ≤ b.
Physical boundary conditions require U  0 and Ux  0 that for x  ±∞. The finite interval [a, b] is
partitioned into N finite elements of equal length h by the nodes xm such that a = x0 < x1 … < = b and h =
(xm + 1 – xm). The quartic B�splines φm(x), (m = –2(1)N + 1), at the knots xm which form a basis over the
interval [a, b] are denned by the relationships (see [18])

(3)

A global approximation UN(x, t) to the exact solution U(x, t) can be expressed in terms of the quartic
B�splines as:

(4)

where δj are time dependent quantities to be determined from both boundary and weighted residual con�
ditions. Each quartic B�spline covers five elements so that each element [xm, xm + 1] is covered by five

splines. The nodal values Um, ,  and  at the knots xm are derived from (3) and (4) in the following
form

(5)
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A typical finite interval [xm, xm + 1] is mapped to the interval [0, 1] by local coordinates ξ related to the
global coordinates

(6)

so the quartic B�spline shape functions over the element [0, 1] can be defined as

(7)

Since all splines apart from φm – 2(x), φm – 1(x), φm(x), φm + 1(x) and φm + 2(x) are zero over the element [0, 1],
approximation (4) over this element can be written in terms of basis functions (7) as

where δm – 2, δm – 1, δm, δm + 1, δm + 2 act as element parameters and B�splines φm – 2(x), φm – 1, φm, φm + 1, φm + 2

as element shape functions. When Subdomain method is applied to Eq. (1) with weight function

(8)

we obtain the weak form of (1)

(9)

Substituting the transformation (6) into weak form (9) and integrating Eq. (9) term by term with some
manupulation by parts, leads to

(10)

where the dot denotes differentiation with respect to t and

If time parameters δm and its time derivatives  in Eq. (10) are discretized by the Crank–Nicolson and
forward difference approach respectively,

(11)

we obtain a recurrence relationship between two time levels n and n + 1 relating two unknown parameters

, , i = m – 2, m – 1, …, m + 2,

(12)
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where

and

The system (12) consists of N + 1 linear equation in N + 5 unknowns (δ–2, δ–1, …, δN + 1, δN + 2). To get a
solution to this system, we need four additional constraints. These are obtained from the boundary con�
ditions (2) and can be used to eliminate δ–1, δ–1, δN + 1 and δN + 2 from the system (12) which then becomes
a matrix equation for the δN + 1 unknowns d = (δ0, δ1, …, δN) of the form

A lumped value for Zm is obtained from (Um + Um + 1)
2/4 as

The resulting system can be efficiently solved with a variant of the Thomas algorithm, and we need an

inner iteration δn* = δn + (δn – δn – 1) at each time step to cope with the non�linear term Zm. A typical

member of the matrix system (12) can be written in terms of the nodal parameters  as

(13)

where

and

Before the solution process begin iteratively, the initial vector δ0 = (δ0, δ1, …, δN) must be determined by
using the initial condition and following derivatives at the boundaries:

Eliminating  ,  from the system (12) we get (N + 1) × (N + 1) four�banded matrix system
of the form:
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where W is

δ0 = [ , , …, ]T and K = [U(x0, 0), U(x1, 0), U(xN, 0)]T. This matrix system can be solved efficiently
by using a variant of Thomas algorithm.

2.1. A Linear Stability Analysis

We implement the Fourier stability analysis method in which the growth factor of a typical fourier
mode is defined as

(14)

where k is mode number and h the element size. To apply the stability analysis, the MEW equation needs
to be linearized by assuming that the quantity U in the non�linear term U2Ux is locally constant. Substi�
tuting the Eq. (14) into the scheme (13) we have

(15)

where

(16)

Taking the modulus of Eq. (15) gives |g| = 1, therefore we find that the scheme (13) is unconditionally stable.

3. NUMERICAL EXAMPLES AND RESULTS

Now we obtain the numerical solutions of the modified equal width wave equation for two problems:
the motion of single solitary wave and interaction of two solitary waves. All numerical calculations were
performed in double precision arithmetic on a Pentium 4 PC using a Fortran compiler. The accuracy of
the method is measured by both the L2 error norm

and the error norm

to show how good the numerical scheme predicts the position and amplitude of the solution as the simu�
lation proceeds. The MEW Eq. (1) satisfies only three conservation laws given by [19]
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which correspond to conservation of mass, momentum and energy, respectively. Olver in [20] has shown
that EW equation have just three such laws and this may also be true of the MEW equation also.

3.1. The Motion of Single Solitary Wave

As a first problem we consider Eq. (1) with the boundary conditions U  0 as x  ±∞ and the initial
condition

The MEW equation has an analytical solution of the form

where k =  and v =  is the wave velocity. This solution corresponds to a solitary wave of amplitude A,

initially centered at x0. For this problem the analytical values of the invariants are (see [6])

(17)

For the computational work we have used the parameters h = 0.1, Δt = 0.05, μ = 1, x0 = 30, A = 0.25
through the interval 0 ≤ x ≤ 80. The analytical values of invariants are I1 = 0.7853982, I2 = 0.1666667, I3 =
0.0052083. The simulations are run to time t = 20 to find error norms L2, L∞

 and conserved quantities I1,
I2, I3. Table 1 compares the values of the invariants and error norms obtained by the present method and
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�������.= = =

Table 1. Invariants and error norms for single solitary wave with h = 0.1, Δt = 0.05, A = 0.25

t I1 I2 I3 L2 × 103 L
∞

 × 103

0 0.7853966 0.1666664 0.0052083 0.0000000 0.0000000

5 0.7853966 0.1666664 0.0052083 0.0129509 0.0077917

10 0.7853966 0.1666664 0.0052083 0.0259120 0.0157724

15 0.7853967 0.1666664 0.0052083 0.0388849 0.0239295

20 0.7853967 0.1666664 0.0052083 0.0518731 0.0321136

20 [11] 0.7853898 0.1667614 0.0052082 0.0796940 0.0465523

20 [12] 0.7853977 0.1664735 0.0052083 0.2692812 0.2569972

20 [15] 0.7853967 0.1666663 0.0052083 0.0801465 0.0461218

20 [17] 0.7849545 0.1664765 0.0051995 0.2905166 0.2498925

0.25

0.20

0.15

0.10

0.05

0 10 20 30 40 50 60 70 80

U(x, t) (a) (b)
0.25

0.20

0.15

0.10

0.05

0 10 20 30 40 50 60 70 80

U(x, t)

t = 0 t = 20

x

Fig. 1. The motion of a single solitary wave with h = 0.1, t = 0.05 at t = 0 and t = 20.
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some earlier methods (see [11, 12, 15, 17]) at time t = 20. It is clear from the table that the error norms
obtained by the present method are smaller than those given in [11, 12, 15, 17] and agreement between
analytical and numerical solutions is perfect. Invariants I1, I2 and I3 change by less than 2 × 10–6%, 3 × 10–6%,
7 × 10–6% throught the run, respectively. The invariants thus remain satisfactorily constant. Figure 1 shows
that the proposed method perform the motion of propagation of a solitary wave satisfactorily, which moves
to the right at a constant speed and preserves its amplitude and shape with increasing time as expected.
Amplitude is 0.25 at t = 0 which is located at x = 30, while it is 0.249922 at t = 20 which is located at
x = 30.6. The absolute difference in amplitudes at times t = 0 and t = 20 is 7.8 × 10–5 so that there is a little
change between amplitudes. The error graph is given at t = 20 in Fig. 2. As is seen that the maximum errors
occur around the central position of the solitary wave. This problem is also considered for different values

3.0 × 104

−4.0 × 104

−3.0 × 104

−2.0 × 104

−1.0 × 104

0

1.0 × 104

2.0 × 104

0 10 8020 30 40 50 60 70
x

Fig. 2. Error graph at t = 20.

Table 2. Invariants and error norms for single solitary wave with different amplitudes, h = 0.1, t = 0.01

A t I1 I2 I3 L2 × 103 L
∞

 × 103

0.25

0 0.7853966 0.1666664 0.0052083 0.0000000 0.0000000

5 0.7853966 0.1666664 0.0052083 0.0129353 0.0077822

10 0.7853966 0.1666664 0.0052083 0.0258808 0.0157541

15 0.7853966 0.1666664 0.0052083 0.0388380 0.0239013

20 0.7853967 0.1666664 0.0052083 0.0518107 0.0320756

20 [12] – – – 0.2692249 0.2569562

0.50

0 1.5707932 0.6666656 0.0833330 0.0000000 0.0000000

5 1.5707931 0.6666656 0.0833330 0.1036996 0.0641990

10 1.5707931 0.6666656 0.0833330 0.2081535 0.1320066

15 1.5707930 0.6666655 0.0833330 0.3140373 0.2014618

20 1.5707930 0.6666655 0.0833330 0.4215203 0.2711694

20 [12] – – – 1.8266059 1.4575680

0.75

0 2.3561897 1.4999976 0.4218734 0.0000000 0.0000000

5 2.3561896 1.4999974 0.4218733 0.3528836 0.2247579

10 2.3561894 1.4999973 0.4218732 0.7164949 0.4603957

15 2.3561894 1.4999973 0.4218732 1.0954564 0.6982392

20 2.3561893 1.4999973 0.4218732 1.4814601 0.9362386

20 [12] – – – 4.3957110 3.0917930

1.0

0 3.1415863 2.6666625 1.3333283 0.0000000 0.0000000

5 3.1415855 2.6666614 1.3333272 0.8533818 0.5485847

10 3.1415849 2.6666607 1.3333265 1.7614062 1.1176331

15 3.1415844 2.6666600 1.3333258 2.6889848 1.6874848

20 3.1415838 2.6666592 1.3333251 3.6194880 2.2576829

20 [12] – – – 8.2853140 5.6821310



COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 55  No. 3  2015

SUBDOMAIN FINITE ELEMENT METHOD WITH QUARTIC B�SPLINES 417

of the amplitude at h = 0.1 and t = 0.01. In Table 2 the error norms and invariants are listed for A = 0.25,
0.5, 0.75, 1. A comparison with [12] shows that the present method provide better results in terms of the
error norms L2 and L

∞
. Figure 3 shows the solutions of the single solitary wave with h = 0.1, Δt = 0.01 for

different values of amplitude A at time t = 20. It is clear that the soliton moves to the right at a constant
speed and almost preserve its amplitude and shape with an increasing of time, as expected. We compute
the convergence rates for the numerical method in space steps hm and time steps Δtm, with the following
formulas respectively (see [11]):

and

The time rate of convergence for the numerical method is computed with various time step and fixed space
step are given in Table 3. It is concluded from the table that the present method provides remarkable
reductions in convergence rates for the smaller times. In addition, the space rate of the convergence for

order
Uexact Uhm

num– / Uexact Uhm 1+
num–( )10log

hm/hm 1+( )10log
������������������������������������������������������������������������=

order
Uexact UΔtm

num– / Uexact UΔtm 1+
num–( )10log

Δtm/Δtm 1+( )10log
�������������������������������������������������������������������������.=

0.25

0 10 20 30 40 50 60 70 80

U(x, t)

0.25

0 10 20 30 40 50 60 70 80

A = 0.25 A = 0.5

0.75

0 10 20 30 40 50 60 70 80

1.00

0.50

0.25

A = 1A = 0.75

x
0 10 20 30 40 50 60 70 80

0.25

x

0.50

0.75

(b)(а)

(d)(c)

Fig. 3. Single solitary wave solutions for various values of A at t = 20.

Table 3. The order of convergence at t = 20, h = 0.1, A = 0.25, 0 ≤ x ≤ 80

Δtm L2 × 103 Order L
∞

 × 103 Order

0.8 0.06867606 – 0.04220891 –

0.4 0.05598789 0.29469246 0.03460578 0.28653455

0.2 0.0528502 0.08320806 0.03270686 0.08141976

0.1 0.05206843 0.02149784 0.03223226 0.02108791

0.05 0.05187319 0.00541981 0.03211361 0.00532049

0.025 0.05182440 0.00135758 0.03208395 0.00133308
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the numerical method is computed with various space step and fixed time step are recorded in Table 4. We
have clearly seen that the convergence rates when Δt = 0.05 is fixed are not as good as for the space steps.

3.2. Interaction of Two Solitary Waves

Our second study concerns with the interaction between two solitary waves. To study interaction of two
solitary waves we use the boundary conditions U  0 as x  ±∞ and the initial condition

(18)

where k = . The initial condition (18) represents two solitary waves, one with amplitude A1 placed

initially at x = x1 and the second with amplitude A2 placed at x = x2. For the numerical simulation,
we first choose the parameters h = 0.1, μ = 1, Δt = 0.025, A1 = 1, A2 = 0.5, x1 = 15, x2 = 30 over the
interval 0 < x < 80 to coincide with those used by Esen in [11]. The analytical invariants can be found as

(19)

The calculations are performed from t = 0 to t = 80 and values of the invariant quantities I1, I2 and I3 are
recorded in Table 5. Table 5 displays a comparision of the values of the invariants obtained by the present

U x 0,( ) Ajsech k x xj–[ ]( ),
j 1=

2

∑=

1
μ
��

I1 π A1 A2+( ) 4.7123889, I2
8
9
�� A1

2 A2
2+( ) 3.3333333,= = = =

I3
4
3
�� A1

4 A2
4+( ) 1.4166667.= =

Table 4. The order of convergence at t = 20, Δt = 0.05, A = 0.25, 0 ≤ x ≤ 80

hm L2 × 103 Order L
∞

 × 103 Order

0.8 4.71902836 – 4.41397880 –

0.4 0.83089313 2.50575500 0.49959156 3.14325869

0.2 0.20634992 2.00957005 0.12731249 1.97237514

0.1 0.05187319 1.99203188 0.03211361 1.98711720

0.05 0.01324799 1.96921560 0.00810628 1.98607293

0.025 0.00325160 2.02655179 0.00204980 1.98355685

Table 5. Comparision of invariants for the interaction of two solitary waves with results from [11] with h = 0.1, t = 0.025

t
Present method [11]

I1 I2 I3 I1 I2 I3

0 4.7123733 3.3333305 1.4166643 4.7123884 3.3352890 1.4166697

10 4.7123741 3.3333303 1.4166642 4.7123853 3.3352836 1.4166647

20 4.7123835 3.3333399 1.4166762 4.7123748 3.3353041 1.4166926

30 4.7126442 3.3336245 1.4170020 4.7126410 3.3359464 1.4176398

40 4.7123933 3.3333936 1.4168064 4.7123946 3.3355951 1.4170695

50 4.7121712 3.3332154 1.4166420 4.7121567 3.3351175 1.4165797

55 4.7121725 3.3332189 1.4166412 4.7121400 3.3350847 1.4165527

60 4.7122144 3.3332433 1.4166475 – – –

70 4.7123166 3.3332928 1.4166608 – – –

80 4.7123744 3.3333167 1.4166672 – – –
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method with those obtained in [11]. It is seen that the obtained values of the invariants remain almost con�
stant during the computer run. They are found to be close to values given by (19). The absolute difference
between the values of the invariants obtained by the present method at times t = 0 and t = 80 are ΔI1 =
1.1 × 10–6, ΔI2 = 1.38 × 10–5, ΔI3 = 2.4 × 10–6 whereas they are ΔI1 = 2.48 × 10–4, ΔI2 = 2.04 × 10–4, ΔI3 =
1.17 × 10–4 in [11]. The changes in these quantities I1, I2, I3 are less than 2.4 × 10–5%, 4.1 × 10–4%, 2 × 10–4%
during the run so that the numerical algorithm has good conservation properties. Figure 4 illustrates the
behaviour of the interaction of two positive solitary waves. It is observed from the Fig. 4 at t = 0 the wave
with larger amplitude is on the left of the second wave with smaller amplitude. Since the taller wave moves
faster than the shorter one, it catches up and collides with the shorter one at t = 35 and then moves away
from the shorter one as time increases. When the interaction is completed we get the figure at t = 80. At
t = 80, the amplitude of larger waves is 1.000331 at the point x = 56.9 whereas the amplitude of the smaller
one is 0.498729 at the point x = 37.7. It is found that the absolute difference in amplitude is 0.331 × 10–3

for the smaller wave and 0.127 × 10–2 for the larger wave for this algorithm. At t = 80, we saw an oscillation
of small amplitude trailing behind the solitary waves. To see this oscillation the scale of figure at t = 80
magnified as shown in Fig. 5. It is clearly seen from the Fig. 5 that an oscillation of the small amplitude is
trailing behind the solitary waves.

In addition we have studied the interaction of two solitary waves with the parameters μ = 1, x1 = 15,
x2 = 30, A1 = –2, A2 = 1, h = 0.1 and Δt = 0.025 in the range 0 ≤ x ≤ 150. Figure 6 shows the development
of the solitary wave interaction. As is clearly seen from the Fig. 6, at t = 0 a wave with negative amplitude
is on the left of another wave with positive amplitude. The larger wave with the negative amplitude catches
up with the smaller one with the positive amplitude as the time increases. Table 6 displays a comparision

Fig. 4. Interaction of two solitary waves with A1 = 1, A2 = 0.5, 0 ≤ x ≤ 80.
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Fig. 5. An expanded vertical scale of Fig. 4f.
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of the values of the invariants obtained by the present method with those obtained in [11]. At t = 55, the
amplitude of the smaller wave is 0.973753 at the point x = 52.5, whereas the amplitude of the larger one is
–2.002144 at the point x = 123.5. It is found that the absolute difference in amplitudes is 2.62 × 10–2 for
the smaller wave and 2.14 × 10–3 for the larger wave. It is observed that the obtained values of the invariants
remain almost constant during the computer run. The absolute difference between the values of the invari�
ants obtained by the present method at times t = 0 and t = 55 are ΔI1 = 3.3 × 10–4, ΔI2 = 5.66 × 10–4, ΔI3 =
2.33 × 10–3 whereas they are ΔI1 = 5.1 × 10–2, ΔI2 = 1.38 × 10–1, ΔI3 = 5.59 × 10–1 in [11]. The analytical
invariants can be found by using Eq. (19) as

The changes of invariants I1, I2, I3 are less than 10 × 10–3%, 4 × 10–3%, 10 × 10–3% during the run, respec�
tively. The invariants so remain constant.

I1 3.1415927, I2– 13.3333333, I3 22.6666667.= = =
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Fig. 6. Interaction of two solitary waves with h = 0.1, A1 = –2, A2 = 1.

Table 6. Comparision of invariants for the interaction of two solitary waves with results from [11] with h = 0.1, t = 0.025
in the region 0 ≤ x ≤ 150

t
Present method [11]

I1 I2 I3 I1 I2 I3

0 –3.1415739 13.3333023 22.6665313 –3.1415915 13.3411364 22.6666177

5 –3.1415386 13.3333028 22.6665164 –3.1373341 13.3297086 22.6211074

10 –3.1294939 13.3157754 22.5691062 –3.1165140 13.2819575 22.3386157

15 –3.1429719 13.3321947 22.6660670 –3.1243642 13.2879992 22.4502917

20 –3.1418073 13.3334504 22.6675388 –3.1190016 13.2781110 22.4081976

25 –3.1416446 13.3335997 22.6678271 –3.1147243 13.2672538 22.3644947

30 –3.1416683 13.3336485 22.6680086 –3.1106562 13.2563740 22.3211768

35 –3.1417159 13.3336973 22.6681813 –3.1065564 13.2454531 22.2776978

40 –3.1417595 13.3337361 22.6683524 –3.1025255 13.2346133 22.2346619

45 –3.1418096 13.3337830 22.6685236 –3.0985577 13.2238575 22.1921206

50 –3.1418535 13.3338213 22.6686945 –3.0945539 13.2130371 22.1493051

55 –3.1419037 13.3338680 22.6688656 –3.0905294 13.2023061 22.1067310
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4. CONCLUSIONS

In this paper, a numerical solution of the MEW equation with a variant of initial and boundary condi�
tions was obtained using the Subdomain method based on the quartic B�splines. We tested our scheme
through single solitary wave in which the analytic solution is known and extended it to study the interac�
tion of two solitary waves where the analytical solution is unknown during the interaction. To show how
good and accurate the numerical solutions of the test problems we have calculated the error norms L2

and L
∞

. The obtained results show that the Subdomain method involving quartic B�spline shape function
is a remarkably successful numerical technique for solving the MEW equation and also can be efficiently
applied to a broad class of physically important non�linear partial differential equations.
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