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Abstract

Let f,m be a real valued function on R, p be nonnegative integer, k be a positive integer and m be a
nonnegative real number. For all z € R, fy(z + (p + 1)k) = mfpm(x + pk) + fpm(z), we call this
function m—extension of Fibonacci p—function with period k. In this paper, we present basic properties of
m—extension of Fibonacci p—functions with period k. Specifying p and m, we obtain Fibonacci (p = 1, m =
1) and Pell (p = 1, m = 2) functions. Furthermore, we define m—extension of odd Fibonacci p—functions
with period k. Moreover, we analyze some properties by using notion of f—even and f—odd functions with
period k. We also demonstrate the products and quotients of these functions and provide new results in the
development of Fibonacci functions with period k.

Keywords: m—extension of Fibonacci p—function with period k, m—extension of odd Fibonacci
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1. Introduction

Fibonacci numbers is one of the most popular and fascinating linear sequences in mathematics and related
fields. The classical Fibonacci sequence is defined by F, 12 = F,, 11 + F},, for n € N, with initial conditions
Fy =0, F;=1. Up until now, many authors have studied the sums, representations, properties, relations
with another mathematical topics, applications and generalizations of the Fibonacci sequence extensively
(see [1-15]). Falcon introduced kth Fibonacci numbers {F} ,, }72, that arises in the study of the recursive
application of two geometrical transformations used in the well known four triangle longest edge (4TLE)
partition[2]. In [7], Yazlik and Taskara defined generalized k—Horadam sequence and proved the properties
of this sequence by means of determinant. Stakhov and Rozin presented, one of the important mathematical
discoveries of the modern Golden Section and Fibonacci numbers theory, Fibonacci p—numbers and some

properties of this sequence, F,(n) = F,(n — 1) + F,(n —p — 1), in [10]. Later on, the authors defined the
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m—extension of the Fibonacci p—numbers as
Fpm(n+p+1) =mbFpm(n+p)+ Fpm(n) (1)

with initial conditions F), ;,(0) = 0, Fp (1) = 1, Fp i (2) = m, Fp i (3) = m?,..., Fym(p + 1) = mP, where
p,n € N and m is positive real number. For different values of p and m in equation (1), it can be reduced
into different numerical sequences. For example, if (p,m) = (1,1), the Fibonacci sequence is obtained as
Fryo = Fpp1 + Fu. If (p,m) = (1,2), the Pell sequence is obtained as P, 2 = 2P,41 + P,. If p =1 and
m = k, the k-Fibonacci sequence is obtained as Fj n42 = kFy 41+ Fi.n [9]. Recently, one of the important
application of these integer sequences is continuous functions. Han et al.,[16], considered Fibonacci functions
on the real numbers R, i.e., functions f : R — R such that forallz € R,  f(z+2) = f(x+1)+f(z). Also they
presented some properties of these functions by using the concept of f—even and f—odd functions. Moreover,
they showed that if f is Fibonacci function then ;plggo % = 1+T‘/5 Afterwards, Sroysang extended
Fibonacci functions to Fibonacci functions with period k as f(z+2k) = f(x+k)+f(z) forallz € Rin [17]. In
[18], Rabago defined the second order linear recurrent function with period k, w(z+2k) = rw(z+k)+sw(x),
where r, s are nonnegative real numbers, which is generalization of the Fibonacci function with period k.
Up until now, authors investigated some properties of the continuous functions of the second order linear
recursive integer sequences. In this paper, we extend these properties to the continuous function in terms
of m—extension of Fibonacci p—numbers which is defined by the (p 4+ 1)th order linear recursive relation.
We present some properties of the m—extension of Fibonacci p—functions with period & using the concept
of f—even and f—odd functions with period k. We also define m—extension of odd Fibonacci p—functions
with period k, investigate the product and the limit of m—extension of Fibonacci p—functions with period

k.

2. m—extension of Fibonacci p—functions with period k

In this section we define m—extension of Fibonacci p—functions with period k£ and present some properties

of these functions.

Definition 2.1. Let k be a positive integer, p be nonnegative integer and m be a nonnegative real number.
A function fpm : R = R is called an m—extension of Fibonacci p—function with period k if it satisfies the
equation

fp,m(x +(p+1Dk) = mfp,m(x + pk) + fpﬂn(l‘)a vz € R. (2)

Taking (p,m) = (1,1) and (p,m) = (1,2) in (2), we obtain Fibonacci and Pell function with period k,
respectively (see [17, 18]).
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Example 2.1. Let « be the positive real number that satisfies the equation o?t! = ma®? 41, k be a positive
integer, p be a nonnegative integer. Then, f,,,(z) = a* is an m—extension of Fibonacci p—function with

period k.

The following are special cases of the previous example:

1. If (p,m) = (1,1) then the function f;1(z) = ¢%, where ¢ = 1+T\/§ is known as golden ratio, is an
example of m—extension of Fibonacci p—function with period & in [17].
2. If (p,m) = (1,2) then the function f;2(z) = 0%, where ¢ = 1 + /2 is known as silver ratio, is an

example of m—extension of Pell p—function with period & in [18].

Proposition 2.1. Let p be a nonnegative integer, k be positive integer and f, », : R — R be an m—extension
of Fibonacci p— function with period k. Assume that fy , is s times differentiable. Then {f) .., fpms>-- - fﬁn

are also m—extension of odd Fibonacci p—functions with period k.

Proposition 2.2. Let p be a nonnegative integer, k be positive integer and f, , : R — R be an m—extension
of Fibonacci p—function with period k. Define gi(z) = fpm(z +1t), for all x € R, where t € R. Then, g:(x)

is also an m—extension of Fibonacci p—function with period k.

Proof. Let x € R. Then,

g(x+(p+1k) = fpm(@+@+1k+1)
= mfpm(@+pk+1t)+ fom(@+1)

= mgi(z + pk) + gi(x)
is an m—extension of Fibonacci p—function with period k. O

Example 2.2. Let p be a nonnegative integer, k be positive integer and ¢ € R. Define g; : R — R by

x4+t

g(z) =a*, Vo € R, (3)
then g;(z) is an m—extension of Fibonacci p—function with period k.

As special cases of the previous example, we have

x4+t

1. If (p,m) = (1,1), then the function g(x) = fi1(x +t) = ¢ * is an example of m—extension of
Fibonacci p—function with period k in [17].

2. If (p,m) = (1,2), then the function g;(z) = fi2(x +t) = o* is an example of m—extension of Pell
p—function with period k& in [18].
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Theorem 2.1. Let f, ,, be an m—extension of Fibonacci p— function with period k and F, ,, be an m—extension
of Fibonacci p—sequence with the initial conditions F, ,(0) = 0,F, (1) = 1, F, ,n(2) = m, ..., F, n(p) =
mP~L. Then, for n > 2p and Vz € R,

p—1

fom(@ +nk) = Fym(n—p+1)f(z+ pk) + ZFP7m(n —p—19)f(z+ik). (4)
=0

Proof. We prove the theorem by induction on n. For n = 2p, we get

Spm(@+20K) = mfym (@t (20— DE) + fypm(z + (p— DE)

= m[mfpmn(@+ (20 = 2)k) + frm(@+ (p = 2)K)
+fpm(e + (0= D)

= 2 fpm(@+ (2p— 2)k) + fypm (@ + (= D)
1 fym (@ + (p = 2)K)

=m0’ fpm(z + (20 = 3)k) + fom(@ + (0 — 1)k)

+mfpm(@+ (p —2)k) + m2fp7m(x + (p = 3)k).
Continuing this process (p — 3) times, we have

foom(x +2pk) = mPf, m(x+ k) + fom(z+ (p—1)k)

Fmfpm(@+ (p—2)k) + - +mP 7 fp ().

By considering the initial conditions of the m—extension of Fibonacci p—sequence, we obtain

foom(@ +2pk) = Fpm(p+1) fpm(@+pk) + Fpm(l) fpm(z+ (p— 1))
+F, ,m(2)fp,m(x + (p - 2)k) +-+ F ,m(p - l)fp,m(m + k)
4
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Assume that equation (4) is true for n > 2p + 1. Then we write

fom(@+(n+ k) = mfpm(@+nk)+ fom(@+ (n—pk)

= m|Fpmn—p+1)fpm(x+pk)
+Fpm(n—2p+1) fpm(z + (p— 1)k)
Tt Fpm(n = p) fpm(x)
+F, m(n—2p+ 1) fpm(z+ pk)
FEpm(n = 3p+ 1) fpm(z+ (p— 1K)
o+ Fpm(n — 2p) fpm(x)

= (mFymn—p+1)+ Fypm(n—2p+1)) fpm(z + pk)
+(mFpm(n—2p+1)+ Fpm(n—3p+1)) fpm(z+ (p— 1)k)

+ ot (mEpm(n = p) + Fpm(n —2p)) fpm(x)
p—1

= Fpmm—p+2)f(z+pk)+ Y Fpm(n+1-p—i)f(z+ik),
=0

which completes the proof. U

Corollary 2.1. Let f, », be an m—extension of Fibonacci p—function with period k and F, ,, be the sequence

of m—extension of Fibonacci p—numbers. Then, for any x € R and n > 2p,
p—1
a" =F,,(n—p+ 1)ap+ZFp7m(n—p—i)0/. (5)
i=0
Proof. From example (2.1), we say that f,,,(z) = a*, k is a positive integer, is an m—extension of Fibonacci

p—function with period k, so it satisfies the Equation(2), for all z € R, i.e.

z4nk

a = fpm(z+nk)
p—1
= Fpm—p+1)f(@+pk)+ Y Fpm(n—p—i)f(x+ik)
=0

= O‘%+pr,7n(n -p+1)+ O‘%Fp,m(n -p)+ a%—HFp,m(n -p—1)

+ afPPF, (n—p—=2) 4+ ab PR, (0 - 2p+ 1),

Upon simplifying, we get

p—1
a”:Fp7m(n—p+1)ozp—|—ZF7m(n—p—i)o/', (6)
i=0
which is desired. O

278 Yasin YAZLIK et al 274-289



J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.2, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

3. m—extension of odd Fibonacci p—functions with period k

In this section, we present the m—extension of odd Fibonacci p—function with period k and analyze

some properties of these functions.

Definition 3.1. Let p be a nonnegative integer, m be a nonnegative real number and k be a positive integer.
A function fpm : R = R is said to be m—extension of odd Fibonacci p—function with period k, if fpm
satisfies

fom(@+ (p+ 1k) = —mfpm(z +pk) + fpm(z), VreR. (7)

Example 3.1. Let o be the positive real number that satisfies the equation o?™' = ma? + 1, k be a
positive integer, p be a nonnegative integer. Therefore f,,,(r) = a*, for all x € R, is an m—extension of

odd Fibonacci p—function with period k.

Proposition 3.1. Let p be a nonnegative integer, k be positive integer and fp, , : R = R be an m—extension
" (s)

p,ms sy Jp,m

of odd Fibonacci p—function with period k. Assume that fp, m is s times differentiable. Then {fxlmnv

are also m—extension of odd Fibonacci p—functions with period k.

Proposition 3.2. Let p be a nonnegative integer, k be positive integer and fp m : R = R be an m—extension
of odd Fibonacci p—function with period k. Define gi(x) = fpm(z +1t), for all x € R, where t € R. Then,

gt s also an m—extension of odd Fibonacci p— function with period k.

Proof. Let x € R. Then,

gz +@+1k) = foml@+@+Dk+1)

— M fpm(x+pk+1t)+ fpm(x+1)

—mg(z + pk) + g:(z).

Therefore, g;(z) is an m—extension of odd Fibonacci p—function with period k. O

4. Products of m—extension of Fibonacci p—functions with period k

In this section, we present the product of m—extension of Fibonacci p—functions with period k by using

the concept of f—even and f—odd functions with period k which are defined in [16].

Definition 4.1 ([16]). Let k € N and ¢ : R — R be such that if oh = 0 where h : R — R is continuous,
then h = 0. The map ¢ is said to be an f—even and f—odd function with period k if o(x + k) = p(z) and
if p(x + k) = —p(x), respectively, for any x € R.
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Theorem 4.1. Let k be a positive integer, ¢ : R — R be an f—even function with period k and fp ., : R = R
be a continuous function.Then, f, , s an m—extension of Fibonacci p—function with period k if and only

if (fpm) is an m—extension of Fibonacci p—function with period k.

Proof. First, we assume that f, ,, is an m—extension of Fibonacci p—function with period k. For any = € R,

(@hom)(@+ P+ 1R) = @@+ @+ D) fpm(@ + (p+ 1))
= o+ (p+ 1R) [ o (@ + K) + o ()]
= mp(z + pk) fp.m(x + pk) + @(2) fpm(x)
= M(Pfpm) (@ +DR) + (@ fpm)(@):
Therefore, (¢f,.m) is an m—extension of Fibonacci p—function with period k. Next, assume that (¢ fp )
is an m—extension of Fibonacci p—function with period k, then
@+ k) fpm(@+ (p+DE) = p(@+ 0+ Dk) fpm(@+ (p+1)k)
= (efpm)(z+ (p+1)k)
= M(Pfpm) (@ + k) + (9fpm) (@)
= mp(x + pk) fp.m(z + pk) + @(2) fp.m(x)
= pla+ k) [mfpum (@ +PR) + frum(@)].

Thus, fpm is an m—extension of Fibonacci p—function with period k. This completes the proof. O

Example 4.1. Let k be a positive integer and define y(z) = — | x| which is an example of f—even function.
Moreover, recall that the function f, ,,(z) = a’ , where « is positive real root of the characteristic equation
aPtl —maP —1 =0, is an m—extension of Fibonacci p—function with period k. By using Theorem 4.1, for

allz e R

8

(Vfpm)(2) = (z = [2])ex

is an example of an m—extension of Fibonacci p—function with period k.

(8)

Theorem 4.2. Let k be a positive integer, ¢ : R — R be an f—even function with period k and fpm : R = R
be a continuous function. Then, fp ., is an m—extension of odd Fibonacci p—function with period k if and

only if (@ fpm) is an m—extension of odd Fibonacci p—function with period k.

Proof. First, assume that f, ,, is an m—extension of odd Fibonacci p—function with period &, for any z € R

(fpm)(@+ (p+1)k) (@ + (p+ 1K) fpm(z + (p+ 1)k)
= plx+(p+1)k) [_mfp,Wn(x + pk) + fp,m(m)}
= —mp(z + pk) fp,m(x + pk) + ©(2) fp,m(2)

= —m(pfpm)(@+pk)+ (@fpm)(T).
7
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Therefore, (¢fp.m) is an m—extension of odd Fibonacci p—function with period k. Next, assume that

(¢fp,m) is an m—extension of odd Fibonacci p—function with period k, for any x € R, then

(@ + k) fpm(z+ (p+1)k) = @@+ p+1)k)fpm@+(+1)k)
= (efpm)(@+ (p+1)k)
= —m(efpm)(z + pk) + (@fp,m)(2)
= —mp(x + pk) fpm(z + pk) + @(2) fp,m(2)

= (@ +k) [-mfpm(z+pk) + fom(z)].
Thus, fpm is an m—extension of odd Fibonacci p—function with period k. This completes the proof. O

Example 4.2. Let k be a positive integer and define y(z) = 2 — | x| which is an example of f—even function
[16]. Moreover, recall that the function f, () = a*, where « is positive real root of the characteristic
equation a?T! +maP — 1 = 0, is an m—extension of odd Fibonacci p—function with period k. By using

Theorem (4.2), for all z € R

ki)

(Vfpm)(@) = (z = [2])a (9)

is an example of an m—extension of odd Fibonacci p—function with period k.

Theorem 4.3. Let k be a positive integer, fpm, and fpm, be two m—extension of Fibonacci p—functions

with period k satisfying

fpﬂnl (l‘ + (p + l)k) = mlfpﬂnl (m +pk) + fpﬂnl (J?), Va eR
foma (T + (p 4+ 1)k) = ma fpm, (T + Pk) + fpm,(x), VreR,
where m1, ms are nonnegative real numbers. Suppose that the following conditions are satisfied:

(C1) fpm, is an f—even function,
(C2) fp.m, is an f—odd function,
(C3) if p is odd then my = ma,
(C4) if p is even then m; = —msg,
(C5) p=my.ms.

Then (fp.my fp,ms) (@) is also an m—extension of Fibonacci p—function with period k.

Proof. Assume that f}, ,,, and fj, m, be two m—extension of Fibonacci p—functions with period k and the
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conditions (C1),(C2),(C3),(C4) and (C5) are satisfied. Then,

(fp.ma fp.ma) (@ + (P + 1)k) Jomi (@4 (P + 1K) fp.m, (x + (p + 1))
= [mafpm, (T +Pk) + fpm, (2)]
(M2 fp.m, (z + PE) + fp,m., (2)]
= mima fpm, (@ + Pk) fp,m. (2 + pk)
+fpm1 (@) fp,mz () + M fpm, (€ + DE) fpm, ()
M2 fp.ms (T + PE) fp.m, ()
= mama fp.m, (z + Pk) fp.m, (€ + pk)
+fpmi (%) fp.ms (2)

= .U(fpmn fp,mz)(x +pk) + (fp,m1 fp,mz)(m)a vz € R.

Thus, (fp,m, fp,ms) s an m—extension of Fibonacci p—function with period k. O

Theorem 4.4. Let k be a positive integer, f, m, be an m—extension of Fibonacci p—function with period k

and fp.m, be an m—extension of odd Fibonacci p—function with period k satisfying

fpﬂnl (.23 + (p + l)k) = mlfp7m1 ($ —|—ka) + fpaml (.13), Vl‘ € R
fooma (@ + (p+1)k) = —mafp my (T + Pk) + fpm, (7), Vo €R,

where my, My are nonnegative real numbers. Suppose that (C6), (C9) and one the following conditions (C7)

and (C8) are satisfied:

(C6) if p is odd or even then my = ma,

(C7) fpmi and fpm, are both f—even functions,
(C8) fpm, and fpm, are both f—odd functions,
(C9) pu=mims

Then, (fp.m, fpms) 18 also an m—extension of odd Fibonacci p—function with period k.

Proof. First assume that fp.,, is an m—extension of Fibonacci p—function with period & and fp m, is

an m—extension of odd Fibonacci p—function with period k and the conditions (C6), (C9) and (C7) are
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satisfied. Then,

(fpﬂm fp7m2)(x + (p+ 1)k)

Spami (@ + (P + 1K) fp.m, (x + (p + 1))
= [ Fpms (@ PR) + Ly, (@)] [ = M2 Sy ma (24 K) + Fyma ()]
= —mama fpm, (€ + k) fp,m, (€ + pk)
+fpomi () fpma (2) + M1 fp my (€ + DE) fp,m, ()
—m2 fp.my (€ + PK) fp,m, ()
= —mimafpm, (& + pk) fpm, (T + Dk)
+fp.ma () fp.ma (%)
= —1(fpmi Jpma) (@ + PE) + (fp.my fp.ms) (@),
Vz € R. Therefore, (fpm,fpms) iS an m—extension of odd Fibonacci p—function with period k. Next,

assume that fp ., is an m—extension of Fibonacci p—function with period k and f, ,,, is an m—extension

of odd Fibonacci p—function with period k and the conditions (C6), (C9) and (C8) are satisfied. Then,

(Fpams Foama) @+ D+ DR) = Fpum, (@ + 0+ DR) fyms (2 + (p+ D)
= [0 Fpns (@ PR+ Ly, (@)] [ = M2 Sy ma (24 E) + Fyma ()]
= —mima fpm, (@ + k) fp,m, (x + pk)
s (2) o () = 101 fpm (2 + DR) fyma (@)
10 fy o (& + D) f s (1)
= —muma fpm, ( + Pk) fpm,(z + pk)
oo (@) s (@)
= il pma) (@ + PR) + (Fpms fyams) (@),
Vo € R. Thus, (fy.m, fy.m,) is an m—extension of odd Fibonacci p—function with period k. This proves the

theorem. 0

Theorem 4.5. Let k be a positive integer, fpm, and fpm, be two m—extension of Fibonacci p—functions

with period k satisfying
fpﬂnl (.’L‘ + (p + l)k) = mlfpm’bl (l‘ +pk) + fpﬂnl (x)’ V.’L‘ € R
foma (T + (p+ 1)E) = ma fym, (T +Pk) + fpm,(x), VreR,

where my, my are nonnegative real numbers. Suppose that (C10),(C11) and one the conditions (C7) and

(C8) are satisfied:

(C10) if p is odd or even then my = —mao,
10
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(C11) p = —my.mas.
Then, (fp.my fpms) 18 an m—extension of odd Fibonacci p—function with period k.

Proof. First assume that fp ., and fp ., are m—extension of Fibonacci p—functions with period k and the

conditions (C7), (C10) and (C11) are satisfied. Then,

Uy Foma) @+ P+ DR) = fyamy (@ + (0 DR fpuma (2 + (04 1))
= | (@4 D) + s (@)] [0Sy (2 + PR) + Fyams ()
= e fym (& 4 D) fpma (@ + PR)
s (@) Foim (@) + 10 Sy (2 4+ D) s ()
+m2 fp.ms (T + PE) fp,m, (2)
= mamafpm. (& + Dk) fp.m, (€ + pk)
+Fams (2) fpma ()
= s Fpoma) @+ PR) + (s Sy (@),

Vz € R. Therefore, (fpm,fp.m,) is an m—extension of odd Fibonacci p—function with period k. Next,
assume that f;, ,, and f, ,, are m—extension of Fibonacci p—functions with period k£ and the conditions
(C8), (C10) and (C11) are satisfied. Then the same result can be obtained. Therefore, (fp m, fp,m,) is an

m—extension of odd Fibonacci p—function with period k. O

Theorem 4.6. Let k be a positive integer, fpm, and fpm, be two m—extension of odd Fibonacci p—functions

with period k satisfying

fpma (x+(p+1k)= —ma fpm, (z + pk) + fp,ml(w)a Vz eR

foma (@ + (p+1)k) = =ma fpm, (T +pk) + fp.m,(2), Vo €R,

where my, ma are nonnegative real numbers. Suppose that the conditions (C1),(C2),(C3),(C4) and (C5) are

satisfied. Then (fpm, fpms)(T) is an m—extension of Fibonacci p—function with period k.

Proof. Assume that fp ., and f, ., be two m—extension of odd Fibonacci p—functions with period k and

11
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the conditions (C1),(C2),(C3),(C4) and (C5) are satisfied. Then,

(fpmifpma) (@ + (0 +DE) = fpm, (@ + (04 DE) fpm, (€ + (p+ 1)k)
= [ = 1S @5 ) + s ()] | = o Fyma (24 DR) + Fpma ()
= mima fpm, (@ + pk) fp.m, (z + pk)
+foma (€) fp.ma (2) = M fpm, (2 + PE) fp.m, (2)
=M fpmy (€ + PK) fp.m, (%)
= mima fpm, (T + DE) fp.m, (x + pk)
+Lpma (%) fp,ms ()
= plfpmi fpms) (@ + ) + (fp.mi fpm,)(2), Vo €R.

Thus, (fp,m, [fp,ms) s an m—extension of Fibonacci p—function with period k. O

Theorem 4.7. Let k be a positive integer, fpm, and fpm, be two m—extension of odd Fibonacci p—functions
with period k satisfying
foomi (@ + (p+ 1)k) = —ma fpm, (x + k) + fom, (z), VreR
Tpms (@ + (p+ 1)k) = —mafpm, (@ + pk) + fpm,(z), Vo €R,
where my,ma are nonnegative real numbers. Suppose that (C10),(C11) and one the conditions (C7) and
(C8) are satisfied. Then, (fpmy fp,m,) is an m—estension of odd Fibonacci p—function with period k.
Proof. First assume that f}, ,,, and fp ., are m—extension of odd Fibonacci p—functions with period £ and
the conditions (C7), (C10) and (C11) are satisfied. Then,
(Fpmifpmo)(@ 4+ (p+1Dk) = fpm, (@ + (p+ 1)E) fp,m, (2 + (p+ 1k)
= | =y (@4 PR) + Fyms ()] | = M2 (@4 D) + fina ()
= mimafpm, (T + Dk) fp.m, (x + pk)
+fpmi (€) fp.ms (2) = 1 fp.my (€ 4 PE) fp.m. (%)
=2 fp,ms (% + PK) fp,m, (%)
= muma fpm, (€ + k) fp.m, (¢ + pk)
+ oy (%) fp.m (%)
= —plfpmi fpme) (@ + PE) + (fp.my fpom2) (@),

Vo € R. Therefore, (fpm, fpm.) is an m—extension of odd Fibonacci p—function with period k. Next,
assume that fp ., and f;, ,, are m—extension of odd Fibonacci p—functions with period k and the conditions
(C8), (C10) and (C11) are satisfied. Then the same result can be obtained. Therefore, (fpm, fp,m,) is an
m—extension of odd Fibonacci p—function with period k. O
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5. Quotients of m—extension of Fibonacci p—functions with period k

In this section, we discuss the limit of quotients of m—extension of Fibonacci p—functions with period

Theorem 5.1. If f, ., is an m—extension of Fibonacci p—functions with period k, then the limit of the

. Jo,m(2+k) .
quotient pfp,m(:c) exists.
Proof. Let k € N, m € RT, p be a nonnegative integer and n > 2p. Consider the quotient Q(z) = 7f‘;;m(z(j)k),
p,m\T

where f,, ,, is an m—extension of Fibonacci p—function with period k. We have two possibilities such that
either Q(x) < 0 or Q(x) > 0. First, suppose that Q(x) < 0 then without loss of generality, fp.,(z) > 0 and
fp.m(z + k) < 0. Therefore,

fp.m(x + 2pk)

M fpm(z+ (20 — 1K) + fpm(z + (p — 1)k)
= m* fpm(@+ (20 = 2)k) + fpm(z + (p — 1)k)
+mfpm(@ + (p = 2)k)
= m*fym(z+(2p = 3)k) + fpm(z+ (p— 1)k)
A fpm (@ 4 (p = 2)k) +m? fpm (2 + (p — 3)k)
= m? fpm(z+pk) + fpm(z+ (p—1)k)
o= mP 2 (@ k) A+ mP T f (@)
= Fpm@+ D) fpm(@+pk) + Fpm(1) fpm(z + (p — 1)E)

- Fp7m(p — 1)fp7m($ + k) + Fpﬁm(p)fp,m(x)a

fom(@+ (@2p+1)k) = mfpm(x+2pk) + fpm(z + pk)
= [ fyn (@ PR) + fypum( + (p = 1)
o= mP 2 (k) + m”*lfp,m(z)] + f(z + pk)
= (mP" 4 1) fpm (@ + pk) + mfpm(z + (p— k)
o= mP T (@ k) A mP f i (2)
= Fpm(P+2)fpm(x + pk) + Fpm(2) fpm(z + (p — 1)k)

oo = Fpn (D) fom (@ 4+ k) + Fypon (0 + 1) fpm (2).
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fom(z+ @2p+2)k) = mfpm(z+ (2p+ 1K)+ frm(z+ (p+1)k)

= m|mP* 1) fpm(@ +pk) +mfpm(z+ (p—1)k)
o =P (@ k) P f ()
+mf(z + pk) + f()

= (mP*? 4 2m) fpm (@ + pk) +m? fpm(z + (p — 1)k)
o=l fy (@ 4 k) + (P 1) f (@)

= Fpm(p+3)fom (@ + k) + Fpn(3) fo.m(z + (p — k)
+o = Fpm(p + 1) fpm(@ + k) + Fpm(p +2) fpm ().

Continuing this process, we have

fom(z+nk) = Fpmn—p+1)fpm(z+pk)
= +F,m(n—2p+1)fpm(z+ (p—1)k)
=+ = vam(n —pP- 1)fp,m(z + k) =+ Fp,m(n _p)fp,m(x)

and

fp,m(x + (n + 1)k) = Fp,m(n —p+ 2)fp,m(x +pk)

= 4+F,m(n—2p+2)fpm(x+ (p—1)k)

+oo = Fyn(n =) fpm (@ + k) + Fyp(n = p+ 1) fpm (),

where F), ,,, is an m—extension of Fibonacci p—sequence with the initial conditions, F), ,,(0) = 0, F},,,(1) =1,
Fym(2) =m, ..., Fpm(p) =mP~L. Given 2’/ € R, there exists x € R such that 2’ = z + nk . Therefore,

fp,m(x/ + k) _ fp,m(m + (n + 1)k)
fpm(2') fpm(z + nk)

Fp,m(” —p+ 2)fp,m(‘r —I—pk) + = Fp,m(n _p)fp,m(‘r + k)+
Fp,m(n -p + 1)fp,m(x)
Fp,m(n —-p+ 1)fp,m(x +pk) + = Fp,m(n —P— 1)fp,m(x =+ k)+

Fypm(n —p)fpm(z)

F;v;m(n — D)

p,’m(n P+ ) -fp,m(x +pk) + Fp,m(n —p+ 2)

Fom(x +k)+

F,min—p+1) i

| Bmln—pr ]

B [ Fm(n_p_l)
F,mn— 1 m k A LU S m k
D, (n p+ )_fp, (x+p )+ Fp,m(n_p_kl)fp’ (.T"— )+
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/ J—
lim 7fp’m(x +k) lim prm(n p+2)

Fp,m(” — D)
fom(x+pk)+ - — mfp,m(x +k)+
wﬂm@

Fpm(n—p+2)

n—oo n—oo

Preer) = )

fom(2') Fpm(n—p+1)

Fp,m(n_p_ 1)

fp, ( p ) Fp7m(n_p+1)

fpm (@ +k)+

( lim
n—00 Fp,m

Fpm(n —p)

Fpm(n—p+ l)fp’m(w)

; Fpm(n —p)

fp.m(x + pk) + nhﬁn;o Fym(n—p+2) fpm(x+k)+
o Fym(n—p+1)

! e m

Fp’m(n_p+2)) nlﬁnclo Fp’m(n_p+2)fp’ (z)
B 1 F m - _1

Fpm(n—p+1)
fpm(2)

Fpm(n—p)

Fpm(n—p+1)

Let N=n+1. If n — oo then N — co. So, we can write the above expression as

Fpm(N—p—1)

ol ph) +- = Jim PP (k)
. Fpm(N —p)
( lim fp:;n(x/ Wt k)) = lim (?pmgn —pt i)) ngnoo FP;(N —pt l)fp’m;x) =o=T
T ) TN IEDI Gtk e i O e R
e
ol pk) oo = Jim EEL g (o)
o N F:ﬂ:z\g]\i;i)l)fp’m(x) .

fp,m(CC —i—pk) + .-

lim Fpm(n —p)

n—00 Fp,m(n —p+1)

n—00 vam(n —p+1)

F, —p—1
lim P7m(n p )

fpm (T +k)+

fpm()

Here a,, is the unique positive real root of the characteristic equation of m—extension of Fibonacci p—sequence.

Next, suppose that Q(z) > 0, without loss of generality we assume fp, ., (x) > 0, fp.m(x+k) > 0. Identically,

fpm(z+(n+1)k)

we can easily obtain that lim,, . ( i ey
pm
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