
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/272485940

A Numerical Solution of the MEW Equation Using Sextic B-Splines

Article  in  International Journal of Advanced Research · July 2013

DOI: 10.5373/jaram.1542.091012

CITATIONS

3
READS

201

2 authors, including:

Some of the authors of this publication are also working on these related projects:

uzaktan eğitim View project

Wave equatiobs View project

Turabi Geyikli

Inonu University, Faculte of Education, Malatya, Turkey

20 PUBLICATIONS   323 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Battal gazi Karakoc on 24 February 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/272485940_A_Numerical_Solution_of_the_MEW_Equation_Using_Sextic_B-Splines?enrichId=rgreq-97e9906443d7731acc8bea5f85bb5488-XXX&enrichSource=Y292ZXJQYWdlOzI3MjQ4NTk0MDtBUzoyMDAzNTcxOTI5NjYxNDRAMTQyNDc4MDI4NTI3NQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/272485940_A_Numerical_Solution_of_the_MEW_Equation_Using_Sextic_B-Splines?enrichId=rgreq-97e9906443d7731acc8bea5f85bb5488-XXX&enrichSource=Y292ZXJQYWdlOzI3MjQ4NTk0MDtBUzoyMDAzNTcxOTI5NjYxNDRAMTQyNDc4MDI4NTI3NQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/uzaktan-egitim?enrichId=rgreq-97e9906443d7731acc8bea5f85bb5488-XXX&enrichSource=Y292ZXJQYWdlOzI3MjQ4NTk0MDtBUzoyMDAzNTcxOTI5NjYxNDRAMTQyNDc4MDI4NTI3NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Wave-equatiobs?enrichId=rgreq-97e9906443d7731acc8bea5f85bb5488-XXX&enrichSource=Y292ZXJQYWdlOzI3MjQ4NTk0MDtBUzoyMDAzNTcxOTI5NjYxNDRAMTQyNDc4MDI4NTI3NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-97e9906443d7731acc8bea5f85bb5488-XXX&enrichSource=Y292ZXJQYWdlOzI3MjQ4NTk0MDtBUzoyMDAzNTcxOTI5NjYxNDRAMTQyNDc4MDI4NTI3NQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Turabi-Geyikli?enrichId=rgreq-97e9906443d7731acc8bea5f85bb5488-XXX&enrichSource=Y292ZXJQYWdlOzI3MjQ4NTk0MDtBUzoyMDAzNTcxOTI5NjYxNDRAMTQyNDc4MDI4NTI3NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Turabi-Geyikli?enrichId=rgreq-97e9906443d7731acc8bea5f85bb5488-XXX&enrichSource=Y292ZXJQYWdlOzI3MjQ4NTk0MDtBUzoyMDAzNTcxOTI5NjYxNDRAMTQyNDc4MDI4NTI3NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Turabi-Geyikli?enrichId=rgreq-97e9906443d7731acc8bea5f85bb5488-XXX&enrichSource=Y292ZXJQYWdlOzI3MjQ4NTk0MDtBUzoyMDAzNTcxOTI5NjYxNDRAMTQyNDc4MDI4NTI3NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Battal_Karakoc2?enrichId=rgreq-97e9906443d7731acc8bea5f85bb5488-XXX&enrichSource=Y292ZXJQYWdlOzI3MjQ4NTk0MDtBUzoyMDAzNTcxOTI5NjYxNDRAMTQyNDc4MDI4NTI3NQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Journal of Advanced Research in
Applied Mathematics
Online ISSN: 1942-9649

Vol. 5, Issue. 3, 2013, pp. 51-65
doi: 10.5373/jaram.1542.091012

A numerical solution of the MEW equation using
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Abstract. In this article, a numerical solution of the modified equal width wave
(MEW) equation, based on subdomain method using sextic B-spline is used to simu-
late the motion of single solitary wave and interaction of two solitary waves. The three
invariants of the motion are calculated to determine the conservation properties of the
system. L2 and L∞ error norms are used to measure differences between the analyti-
cal and numerical solutions. The obtained results are compared with some published
numerical solutions. A linear stability analysis of the scheme is also investigated.
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1 Introduction

This study is concerned with applying the sextic B-spline function to develop a numerical
method for approximation of the MEW equation of the form

Ut + 3U2Ux − µUxxt = 0, (1.1)

with the boundary conditions

U(a, t) = 0, U(b, t) = 0,
Ux(a, t) = 0, Ux(b, t) = 0, t > 0,

(1.2)

and the initial condition
U(x, 0) = f(x) a ≤ x ≤ b
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where t is time, x is the space coordinate, µ is a positive parameter, U(x, t) is wave am-
plitude and f(x) is a prescribed function. The equal width wave (EW) equation, which
is an alternative form of the nonlinear dispersive waves to the well known Korteweg- de
Vries (KdV) and regularized long wave (RLW) equation is a model non-linear partial
differential equation used for the simulation of one-dimensional non-linear waves propa-
gating in dispersive media. The EW equation represents a number of important physical
phenomena among which are shallow water waves and ion acoustic plasma waves [2,14].
MEW equation, which we discuss here, is related with the modified regularized long wave
(MRLW)equation [1] and modified Korteweg-de Vries (MKdV) equation [7] is based
upon the equal width wave (EW) equation. The modified equations are non-linear wave
equations with cubic nonlinearities and have solitary wave solutions which are pulse
like [14]. MEW equation has solitary wave solutions with both positive and negative
amplitudes, all of which have the same width. The MEW equation with a limited set
of boundary and initial conditions has an analytical solution like the EW equation. So,
many numerical methods have been used for solving the MEW equation. Wazwaz [17]
investigated the MEW equation and two of its variants by the tanh and the sine-cosine
methods. Zaki [18,19] considered the solitary wave interactions for the MEW equation by
Petrov-Galerkin method using quintic B-spline finite elements and obtained the numeri-
cal solution of the EW equation by using the least-squares method. Variational iteration
method is introduced to solve the MEW equation by Junfeng Lu [12]. Esen [3,4]applied
a lumped Galerkin method based on quadratic B-spline finite elements have been used
for solving the EW and MEW equation. A. Esen and S. Kutluay [5] studied a linearized
implicit finite difference method in solving the MEW equation. Saka [16] proposed algo-
rithms for the numerical solution of the MEW equation using quintic B-spline collocation
method. T. Geyikli and S. Battal Gazi Karakoç [9, 10] solved the MEW equation by
a collocation method using septic B-spline finite elements and using a Petrov-Galerkin
finite element method with weight functions quadratic and element shape functions are
cubic B-splines. D. J. Evans and K. R. Raslan [6] studied the generalized EW equation
by using collocation method based on quadratic B-splines to obtain the numerical solu-
tions of a single solitary waves, and the birth of solitons. Hamdi et al. [11] derived exact
solitary wave solutions of the GEW equation.

In this work, Subdomain method is developed for the MEW equation using sextic
B-spline function. The proposed method is shown to represent accurately the motion of
single solitary wave and interaction of the two solitary waves. A linear stability analysis
based on a Fourier method shows that the numerical scheme is unconditionally stable.

2 Sextic B-spline subdomain finite element method

The region [a, b] is partitioned into uniformly sized finite elements of equal length h by
the knots xm such that a = x0 < x1 · · · < xN = b. Let ϕm(x) be sextic B-splines with
knots at the points xm,m = 0, 1, ..., N. The set of splines {ϕ−3, ϕ−2, . . . , ϕN+1, ϕN+2}
forms a basis for functions defined over [a, b]. So a global approximation UN (x, t) to the
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exact solution U(x, t) can be expressed in terms of the sextic B-splines as:

UN (x, t) =

N+2∑
m=−3

δm(t)ϕm(x) (2.1)

where δm are time dependent quantities to be determined from both boundary and
weighted residual conditions. Each sextic B-spline covers seven elements so that each ele-
ment [xm, xm+1] is covered by seven splines. Sextic B-splines ϕm(x),
(m = −3(1)N + 2 ), at the knots xm which form a basis over the interval [a, b] are
defined by the relationships [15];

ϕm(x) =
1

h6



(x− xm−3)6, x ∈ [xm−3, xm−2],
(x− xm−3)6 − 7(x− xm−2)6, x ∈ [xm−2, xm−1],
(x− xm−3)6 − 7(x− xm−2)6 + 21(x− xm−1)6, x ∈ [xm−1, xm],
(x− xm−3)6 − 7(x− xm−2)6 + 21(x− xm−1)6 − 35(x− xm)6, x ∈ [xm, xm+1],
(x− xm+4)6 − 7(x− xm+3)6 + 21(x− xm+2)6, x ∈ [xm+1, xm+2],
(x− xm+4)6 − 7(x− xm+3)6, x ∈ [xm+2, xm+3],
(x− xm+4)6, x ∈ [xm+3, xm+4],
0, otherwise,

(2.2)

where h = (xm+1 − xm). Using (2.1) and (2.2), the nodal values U and its 1st, 2nd and
3rd derivatives at the knots xm are obtained as follows:

Um = U(xm) = δm−3 + 57δm−2 + 302δm−1 + 302δm + 57δm+1 + δm+2,
U ′
m = U ′(xm) = 6

h(−δm−3 − 25δm−2 − 40δm−1 + 40δm+ 25δm+1 + δm+2),

U
′′
m = U

′′
(xm) = 30

h2 (δm−3 + 9δm−2 − 10δm−1 − 10δm + 9δm+1 + δm+2),

U
′′′
m = U

′′′
(xm) = 120

h3 (−δm−3 − δm−2 + 8δm−1 − 8δm + δm+1 + δm+2).

(2.3)

A typical finite interval [xm, xm+1] is mapped to the interval [0, 1] by local coordinates
ξ related to the global coordinates

hξ = x− xm, 0 ≤ ξ ≤ 1 (2.4)

so the sextic B-spline shape functions over the element [0, 1] can be defined as ϕe =
(ϕm−3, ϕm−2, ϕm−1, ϕm, ϕm+1, ϕm+2, ϕm+3),

ϕe =



ϕm−3 = 1− 6ξ + 15ξ2 − 20ξ3 + 15ξ4 − 6ξ5 + ξ6,
ϕm−2 = 57− 150ξ + 135ξ2 − 20ξ3 − 45ξ4 + 30ξ5 − 6ξ6,
ϕm−1 = 302− 240ξ − 150ξ2 + 160ξ3 + 30ξ4 − 60ξ5 + 15ξ6,
ϕm = 302 + 240ξ − 150ξ2 − 160ξ3 + 30ξ4 + 60ξ5 − 20ξ6,
ϕm+1 = 57 + 150ξ + 135ξ2 + 20ξ3 − 45ξ4 − 30ξ5 + 156ξ6,
ϕm+2 = 1 + 6ξ + 15ξ2 + 20ξ3 + 15ξ4 + 6ξ5 − 6ξ6,
ϕm+3 = ξ6.

(2.5)

Since all splines apart from ϕm−3(x), ϕm−2(x), ϕm−1(x), ϕm(x), ϕm+1(x), ϕm+2(x), ϕm+3(x)
are zero over the element [0, 1]. Approximation(2.2) over this element can be written in
terms of basis functions (2.5) as

UN (ξ, t) =

m+3∑
j=m−3

δj(t)ϕj(ξ)
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where δm−3, δm−2, δm−1, δm, δm+1, δm+2, δm+3 act as element parameters and B-splines
ϕm−3(x), ϕm−2(x), ϕm−1(x), ϕm(x), ϕm+1(x), ϕm+2(x) and ϕm+3(x) as element shape func-
tions. Application of Subdomain method to the Eq.(1.1) with weight function

Wm(x) =

{
1, x ∈ [xm, xm+1],
0, otherwise

(2.6)

produces the weak form ∫ xm+1

xm

1.(Ut + 3U2Ux − µUxxtdx) = 0. (2.7)

Substituting the transformation (2.4) into weak form(2.7) and integrating Eq. (2.7) term
by term with some manipulation by parts, leads to

h
7 (δ̇m−3 + 120δ̇m−2 + 1191δ̇m−1 + 2416δ̇m + 1191δ̇m+1 + 120δ̇m+2 + δ̇m+3)
+Zm(−δm−3 − 56δm−2 − 245δm−1 + 245δm+1 + 56δm+2 + δm+3)

−4µ
h (−δ̇m−3 − 25δ̇m−2 − 40δ̇m−1 + 40δ̇m + 25δ̇m+1 + δ̇m+2) = 0,

(2.8)

where the dot denotes differentiation with respect to t and

Zm = 3(δm−3 + 57δm−2 + 302δm−1 + 302δm + 57δm+1 + δm+2)
2.

If time parameters δm and its time derivatives δ̇m in Eq. (2.8) are discretized by the
Crank-Nicolson and forward difference approach respectively,

δ =
δnm + δn+1

m

2
, δ̇m =

δn+1
m − δnm

∆t
, (2.9)

we obtain a recurrence relationship between two time levels n and n + 1 relating two
unknown parameters δn+1

i , δni , i = m− 3,m− 2, . . . ,m+ 3,

αm1δ
n+1
m−3 + αm2δ

n+1
m−2 + αm3δ

n+1
m−1 + αm4δ

n+1
m + αm5δ

n+1
m+1 + αm6δ

n+1
m+2 + αm7δ

n+1
m+3 =

αm7δ
n
m−3 + αm6δ

n
m−2 + αm5δ

n
m−1 + αm4δ

n
m + αm3δ

n
m+1 + αm2δ

n
m+2 + αm1δ

n
m+3

(2.10)
where

αm1 = 1− EZm −M, αm2 = 120− 56EZm − 24M,
αm3 = 1191− 245EZm − 15M, αm4 = 2416 + 80M,
αm5 = 1191 + 245EZm − 15M, αm6 = 120 + 56EZm − 24M,
αm7 = 1 + EZm −M, m = 0, 1, . . . , N − 1,

and

E =
7∆t

2h
, M =

42µ

h2
.

The system (2.10) consists ofN linear equation inN+6 unknowns(δ−3, δ−2, . . . , δN+1, δN+2).
To get a solution of this system, we need six additional constraints. These are obtained
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from the boundary conditions (1.2). These conditions enable us elimination of the pa-
rameters δ−3, δ−2, δ−1, δN , δN+1 and δN+2 from the system (2.10) which then becomes a
matrix equation for the N unknowns d = (δ0, δ1, . . . , δN−1) of the form

Adn+1 = Bdn.

A lumped value for Zm is obtained from (Um + Um+1)
2/4 as

Zm =
3

4
(δnm−3 + 58δnm−2 + 359δm−1 + 604δnm + 359δnm+1 + 58δnm+2 + δnm+3)

2.

The resulting system can be efficiently solved with a variant of the Thomas algorithm,
and we need an inner iteration δn∗ = δn + 1

2(δ
n − δn−1) at each time step to cope with

the non-linear term Zm. A typical member of the matrix system (2.10) can be written
in terms of the nodal parameters δnm as

γ1δ
n+1
m−3 + γ2δ

n+1
m−2 + γ3δ

n+1
m−1 + γ4 + γ5δ

n+1
m+1 + γ6δ

n+1
m+2 + γ7δ

n+1
m+3 =

γ7δ
n
m−3 + γ6δ

n
m−2 + γ5δ

n
m−1 + γ4 + γ3δ

n
m+1 + γ2δ

n
m+2 + γ1δ

n
m+3

(2.11)

where
γ1 = α− β − λ, γ2 = 120α− 56β − 24λ,
γ3 = 1191α− 245β − 15λ, γ4 = 2416α+ 80λ,
γ5 = 1191α+ 245β − 15λ, γ6 = 120α+ 56β − 24λ,
γ7 = α+ β − λ

and

α = 1, β = EZm, λ = M, m = 0, 1, . . . , N − 1.

To start the recurrence relation system equation (2.10), initial parameters must be de-
termined with the help of initial condition and six boundary conditions as follows:

UN (xm, 0) = δ0m−3 + 57δ0m−2 + 302δ0m−1 + 302δ0m + 57δ0m+1 + δ0m+2 = U(xm, 0)

U
′
N (a, 0) = −δ0−3 − 25δ0−2 − 40δ0−1 + 40δ00 + 25δ01 + δ02 = 0,

U
′′
N (a, 0) = δ0−3 + 9δ0−2 − 10δ0−1 − 10δ00 + 9δ01 + δ02 = 0,

U
′′′
N (a, 0) = −δ0−3 − δ0−2 + 8δ0−1 − 8δ00 + δ01 + δ02 = 0,

U
′
N (b, 0) = −δ0N−3 − 25δ0N−2 − 40δ0N−1 + 40δ0N + 25δ0N+1 + δ0N+2 = 0,

U
′′
N (b, 0) = δ0N−3 + 9δ0N−2 − 10δ0N−1 − 10δ0N + 9δ0N+1 + δ0N+2 = 0,

U
′′′
N (b, 0) = −δ0N−3 − δ0N−2 + 8δ0N−1 − 8δ0N + δ0N+1 + δ0N+2 = 0.

Eliminating δ0−3, δ
0
−2, δ

0
−1, δ

0
N , δ0N+1, δ

0
N+2 from the system (2.10) we get N × N matrix

system of the form

Wδ0 = K
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where W is

W=



384 312 24
2681
9 358 568

9 1
512
9 303 2719

9 57 1
1 57 302 302 57 1

1 57 2719
9 303 512

9
1 568

9 358 2681
9

24 312 384


,

δ0 = [δ00 , δ
0
1, . . . , δ

0
N−1]

T and K = [U(x0, 0), U(x1, 0), . . . , U(xN−1, 0)]
T . This matrix sys-

tem can be solved efficiently by using a variant of Thomas algorithm.

2.1 Stability analysis

The stability analysis is based on the Von Neumann theory in which the growth factor
of a typical Fourier mode

δnj = ξneijkh (2.12)

where k is mode number and h the element size, is determined for a linearization of
the numerical scheme. To apply the stability analysis, the MEW equation needs to
be linearized by assuming that the quantity U in the non-linear term U2Ux is locally
constant. Substituting the equation (2.12) into the scheme (2.11) we have

g =
a− ib

a+ ib
, (2.13)

where

a = 1208 + 40λ+ (1191− 15λ) cos(kh) + (120− 24λ) cos(2kh) + (1− λ) cos(3kh),
b = 245β sin(kh) + 56β sin(2kh) + β sin(3kh).

(2.14)
Taking the modulus of equation(2.13) gives |g| = 1, therefore we find that the scheme
(2.11) is unconditionally stable.

3 Numerical examples and results

We obtain the numerical solutions of the MEW equation for two problems: the motion of
single solitary wave and interaction of two solitary waves. All numerical calculations were
performed in double precision arithmetic on a Pentium 4 PC using a Fortran compiler.
We use error norms L2 and L∞ defined by

L2 =
∥∥U exact − UN

∥∥
2
≃

√√√√h

N∑
J=1

∣∣∣U exact
j − (UN )j

∣∣∣2,
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and

L∞ =
∥∥U exact − UN

∥∥
∞ ≃ max

j

∣∣∣U exact
j − (UN )j

∣∣∣ ,
to measure differences between analytical and numerical solutions and so to show how
good the numerical scheme predicts the position and amplitude of the solution as the
simulation proceeds. The MEW equation possesses only three conservation laws related
with mass, momentum and energy given by [8] in the following manners respectively:

I1 =
∫ b
a Udx ≃ h

∑N
J=1 U

n
j ,

I2 =
∫ b
a [U

2 + µ(Ux)
2
]dx ≃ h

∑N
J=1[(U

n
j )

2 + µ (Ux)
n
j ],

I3 =
∫ b
a U4dx ≃ h

∑N
J=1(U

n
j )

4,

Olver [13] has shown that EW equation have just three such laws and this may also be
true of the MEW equation also.

3.1 The motion of single solitary wave

For this problem, we consider solitary wave solution of Eq. (1.1)

U(x, t) = A sech(k[x− x0 − vt]), k =

√
1

µ
, v =

A2

2
.

This equation represents a single solitary wave of magnitude A, initially centered on x0
and moving to the right with a constant velocity v. The initial condition

U(x, 0) = A sech(k[x− x0])

with constants µ = 1, x0 = 30 and boundary conditions U → 0 as x → ±∞ are used
to coincide with earlier articles. For this problem the analytical values of the invariants
are [18]

I1 =
Aπ

k
, I2 =

2A2

k
+

2µkA2

3
, I3 =

4A4

3k
. (3.1)

For the numerical simulation of this problem we have used the parameters
h = 0.1, ∆t = 0.05, µ = 1, x0 = 30, A = 0.25 through the interval 0 ≤ x ≤ 80.
The analytical values of invariants are I1 = 0.7853982, I2 = 0.1666667, I3 = 0.0052083.
Program was run to time t = 20 to record the error norms L2,L∞ and conserved quan-
tities I1, I2, I3. Table 1 displays a comparison of the values of the invariants and error
norms obtained by the present method with those obtained some earlier methods [4–6,10]
at time t = 20 . It is clear from the table that the error norms obtained by the present
method are smaller than other methods [4–6,10] and agreement between analytical and
numerical solutions is excellent. At time t = 20, the difference between the analytical
and numerical values of the conservation quantities are ∆I1 = ∆I2 = 1 × 10−7 and
∆I3 = 0. Invariants I1, I2 and I3 change by less than 1× 10−6%, 2× 10−6%, 5× 10−6%
throught the run, respectively. So the quantities I1, I2, I3 remain constants during the
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computer run. Fig.1 shows that the proposed method perform the motion of propaga-
tion of a solitary wave satisfactorily, which moves to the right at a constant speed and
preserves its amplitude and shape with increasing time as expected. Amplitude is 0.25
at t = 0 which is located at x = 30, while it is 0.249922 at t = 20 which is located at
x = 30.6. The absolute difference in amplitudes at times t = 0 and t = 20 is 7.8× 10−5

so that there is a little change between amplitudes.
We have also considered first problem for different values of the amplitude at time

step of t = 0.01 and h = 0.1. In Table 2 the error norms and invariants are listed for
A = 0.25, 0.5, 0.75, 1. This method is compared with Ref. [5] and the comparison of error
norms show that the present method provide better results. Fig.2 shows the solutions
of the single solitary wave with h = 0.1,∆t = 0.01 for different values of amplitude A
at time t = 20. It is clear that the soliton moves to the right at a constant speed and
almost preserve its amplitude and shape with an increasing of time, as expected.

Table 1: Invariants and error norms for single solitary wave with h = 0.1, ∆t = 0.05, A = 0.25

and 0 ≤ x ≤ 80.

t I1 I2 I3 L2 × 103 L∞ × 103

0 0.7853966 0.1666664 0.0052083 0.0000000 0.00000000
5 0.7853966 0.1666664 0.0052083 0.0129274 0.0077963
10 0.7853966 0.1666663 0.0052083 0.0258644 0.0157807
15 0.7853967 0.1666663 0.0052083 0.0388122 0.0239359
20 0.7853967 0.1666663 0.0052083 0.0517742 0.0321145

20 [4] 0.7853898 0.1667614 0.0052082 0.0796940 0.0465523
20 [5] 0.7853977 0.1664735 0.0052083 0.2692812 0.2569972
20 [10] 0.7853967 0.1666663 0.0052083 0.0801465 0.0461218
20 [6] 0.7849545 0.1664765 0.0051995 0.2905166 0.2498925
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Figure 1: The motion of a single solitary wave with h = 0.1,∆t = 0.05 at t = 0 and t = 20.

The pointwise rates of convergence in space sizes hm are calculated with the following
formula respectively [4];

order =
log10(|U exact − Unum

hm
|/|U exact − Unum

hm+1|)
log10(hm/hm+1)

.
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Table 2: Invariants and error norms for single solitary wave with different amplitudes, h =

0.1, ∆t = 0.01 and 0 ≤ x ≤ 80.

A t I1 I2 I3 L2 × 103 L∞ × 103

0 0.7853966 0.1666664 0.0052083 0.0000000 0.0000000
5 0.7853966 0.1666664 0.0052083 0.0129274 0.0077963

0.25 10 0.7853966 0.1666663 0.0052083 0.0258644 0.0157807
15 0.7853967 0.1666663 0.0052083 0.0388122 0.0239359
20 0.7853967 0.1666663 0.0052083 0.0517742 0.0321145

20 [5] - - - 0.2692249 0.2569562
0 1.5707932 0.6666654 0.0833330 0.0000000 0.0000000
5 1.5707931 0.6666654 0.0833330 0.1036264 0.0642764

0.5 10 1.5707931 0.6666653 0.0833330 0.2079707 0.1320856
15 1.5707930 0.6666653 0.0833330 0.3137330 0.2015173
20 1.5707930 0.6666653 0.0833330 0.4211132 0.2711978

20 [5] - - - 1.82660590 1.4575680
0 2.3561897 1.4999972 0.4218734 0.0000000 0.0000000
5 2.3561896 1.4999970 0.4218733 0.3525506 0.2248542

0.75 10 2.3561895 1.4999970 0.4218733 0.7157735 0.4603748
15 2.3561895 1.4999969 0.4218733 1.0944557 0.6980905
20 2.3561895 1.4999969 0.4218733 1.4802085 0.9359489

20 [5] - - - 4.3957110 3.0917930
0 3.1415863 2.6666616 1.3333283 0.0000000 0.0000000
5 3.1415860 2.6666613 1.3333279 0.8522712 0.5483568

1.0 10 3.1415860 2.6666612 1.3333279 1.7589319 1.1165885
15 3.1415860 2.6666612 1.3333279 2.6847470 1.6852944
20 3.1415860 2.6666612 1.3333279 3.6129701 2.2540155

20 [5] - - - 8.2853140 5.6821310

Computations are carried out with different spatial step sizes to evaluate the point
rates of convergence in space. In Table 3 the time step is kept fixed at ∆t = 0.05 and
h = 0.8, 0.4, 0.2, 0.1, 0.05, 0.025 to calculate spatial rate of convergence. It can observed
from the Table 3 that the convergence rates when ∆t = 0.05 is fixed are good for the
space sizes.

Table 3: Space rate of convergence at t = 20, ∆t = 0.05, A = 0.25, 0 ≤ x ≤ 80.

hm L2 × 103 order L∞ × 103 order
0.8 3.93871952 - 3.16133286 -
0.4 0.81179451 2.27854019 0.50991029 2.63221758
0.2 0.20571238 1.98048559 0.12802658 1.99379920
0.1 0.05183664 1.98858450 0.03215247 1.99344276
0.05 0.01324614 1.96840019 0.00810867 1.98739236
0.025 0.00325155 2.02637249 0.00204993 1.98389065
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Figure 2: Single solitary wave solutions for various values of A at t = 20.

3.2 Interaction of two solitary waves

Secondly, interaction of two solitary waves is studied by using the initial condition

U(x, 0) =

2∑
j=1

Aj sech(k[x− xj ]), k =

√
1

µ
, (3.2)

together with boundary conditions U → 0 as x → ±∞. The initial condition (3.2)
represents two solitary waves, one with amplitude A1 placed initially at x = x1 and the
second with amplitude A2 placed at x = x2. To ensure an interaction of two solitary
waves we have used the parameters h = 0.1, µ = 1,∆t = 0.025, A1 = 1, x1 = 15, A2 =
0.5, x2 = 30 over the interval 0 ≤ x ≤ 80 to coincide with those used by Esen [4].The
analytical invariants can be found as

I1 = π(A1 +A2) = 4.7123889, I2 =
8

3
(A2

1 +A2
2) = 3.3333333, (3.3)

I3 =
4

3
(A4

1 +A4
2) = 1.4166667.

The experiment was run from t = 0 to t = 80 to allow the interaction in order to
take place. Table 5 compares the computed values of the invariants of the two solitary
waves with results from [4]. It is clear that the obtained values of the invariants are
satisfactorily constant during the computer run. The absolute difference between the
values of the invariants obtained by the present method at times t = 0 and t = 55
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are ∆I1 = 1.1 × 10−6,∆I2 = 1.38 × 10−5, ∆I3 = 2.4 × 10−6 whereas they are ∆I1 =
2.48 × 10−4,∆I2 = 2.04 × 10−4,∆I3 = 1.17 × 10−4 in Ref. [4]. The changes in these
quantities I1, I2, I3 are less than 8 × 10−6%, 3.9 × 10−4%, 1.8 × 10−4% during the run
so that the numerical algorithm has good conservation properties. Fig.3 illustrates the
behavior of the interaction of two positive solitary waves. It is observed from the Fig.3,
at t = 0 the wave with larger amplitude is on the left of the second wave with smaller
amplitude. Since the taller wave moves faster than the shorter one, it catches up and
collides with the shorter one at t = 35 and then moves away from the shorter one as time
increases. When the interaction is completed we get the Fig.3 at t = 80. At t = 80, the
amplitude of larger waves is 1.000331 at the point x = 56.9 whereas the amplitude of the
smaller one is 0.498729 at the point x = 37.7. It is found that the absolute difference in
amplitude is 0.331× 10−3 for the smaller wave and 0.127× 10−2 for the larger wave for
this algorithm. At t = 80, we saw an oscillation of small amplitude trailing behind the
solitary waves. To see this oscillation the scale of figure at t = 80 magnified as shown
in Fig.4. It is clearly seen from the Fig. 4 that an oscillation of the small amplitude is
trailing behind the solitary waves.
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Figure 3: Interaction of two solitary waves with A1 = 1, A2 = 0.5, 0 ≤ x ≤ 80.

We have also studied the interaction of two solitary waves with the parameters µ =
1, x1 = 15, x2 = 30, A1 = −2, A2 = 1, h = 0.1 and ∆t = 0.025 in the range 0 ≤ x ≤ 150.
The experiment was run from t = 0 to t = 55 to allow the interaction to take place.
Fig.5 shows the development of the solitary wave interaction. As is clearly seen from
the Fig.5, at t = 0 a wave with negative amplitude is on the left of another wave
with positive amplitude. The larger wave with the negative amplitude catches up with
the smaller one with the positive amplitude as the time increases. Table 6 displays a
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Figure 4: An expanded vertical scale of Fig.3 at t=80.

Table 4: Comparison of invariants for the interaction of two solitary waves with results from [4]

with h = 0.1,∆t = 0.025 in the region 0 ≤ x ≤ 80.

Present method Galerkin method [4]
t I1 I2 I3 I1 I2 I3
0 4.7123733 3.3333294 1.4166643 4.7123884 3.3352890 1.4166697
5 4.7123725 3.3333291 1.4166640 4.7123718 3.3352635 1.4166486
10 4.7123725 3.3333293 1.4166642 4.7123853 3.3352836 1.4166647
15 4.7123738 3.3333305 1.4166659 4.7123756 3.3352894 1.4166772
20 4.7123820 3.3333389 1.4166762 4.7123748 3.3353041 1.4166926
25 4.7124300 3.3333887 1.4167367 4.7124173 3.3354278 1.4168363
30 4.7126426 3.3336235 1.4170019 4.7126410 3.3359464 1.4176398
35 4.7128471 3.3338936 1.4173015 4.7128353 3.3364247 1.4186746
40 4.7123918 3.3333925 1.4168063 4.7123946 3.3355951 1.4170695
45 4.7122269 3.3332492 1.4166644 4.7122273 3.3352364 1.4166637
50 4.7121696 3.3332142 1.4166420 4.7121567 3.3351175 1.4165797
55 4.7121709 3.3332178 1.4166412 4.7121400 3.3350847 1.4165527
60 4.7122129 3.3332422 1.4166475 - - -
70 4.7123150 3.3332917 1.4166608 - - -
80 4.7123729 3.3333156 1.4166672 - - -

comparison of the values of the invariants obtained by the present method with those
obtained in Ref. [4]. The analytical invariants can be found by using equation(3.3) as

I1 = −3, 1415927, I2 = 13.3333333, I3 = 22.6666667.

At t = 55, the amplitude of the smaller wave is 0.973752 at the point x = 52.5, whereas
the amplitude of the larger one is −2.002144 at the point x = 123.5. It is found that
the absolute difference in amplitudes is 2.62×10−2 for the smaller wave and 2.14×10−3

for the larger wave. It is observed that the obtained values of the invariants remain
almost constant during the computer run. These values are found to be very close
with the analytical values. The absolute difference between the values of the invariants
obtained by the present method at times t = 0 and t = 80 are ∆I1 = 3.27× 10−4,∆I2 =
5.66 × 10−4,∆I3 = 2.33 × 10−3 whereas they are ∆I1 = 5.1 × 10−2,∆I2 = 1.38 ×
10−1,∆I3 = 5.59 × 10−1 in Ref. [4]. The changes of invariants I1, I2, I3 are less than
9.7× 10−3%, 3.6× 10−3%, 9.8× 10−3% during the run, respectively. The invariants so
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Figure 5: Interaction of two solitary waves with h = 0.1,∆t = 0.025, A1 = −2, A2 = 1(0 ≤ x ≤
150).

remain constant.

Table 5: Comparison of invariants for the interaction of two solitary waves with results from [4]

with h = 0.1, ∆t = 0.025 in the region 0 ≤ x ≤ 150.

Present method Galerkin method [4]
t I1 I2 I3 I1 I2 I3
0 -3.1415739 13.3332982 22.6665313 -3.1415915 13.3411364 22.6666177
5 -3.1415356 13.3332986 22.6665162 -3.1373341 13.3297086 22.6211074
10 -3.1294939 13.3157754 22.5691062 -3.1165140 13.2819575 22.3386157
15 -3.1429689 13.3321885 22.6660668 -3.1243642 13.2879992 22.4502917
20 -3.1418073 13.3334504 22.6675388 -3.1190016 13.2781110 22.4081976
25 -3.1416415 13.3335955 22.6678269 -3.1147243 13.2672538 22.3644947
30 -3.1416683 13.3336485 22.6680086 -3.1106562 13.2563740 22.3211768
35 -3.1417128 13.3336930 22.6681812 -3.1065564 13.2454531 22.2776978
40 -3.1417595 13.3337361 22.6683524 -3.1025255 13.2346133 22.2346619
45 -3.1418065 13.3337788 22.6685235 -3.0985577 13.2238575 22.1921206
50 -3.1418535 13.3338213 22.6686945 -3.0945539 13.2130371 22.1493051
55 -3.1419006 13.3338637 22.6688655 -3.0905294 13.2023061 22.1067310

4 Conclusion

In this study, sextic B-spline subdomain procedure for the numerical solution of the
MEW equation is presented. According to the two test problems, the comparison cal-
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culations with the analytic solution shows that a sextic B-spline subdomain method is
capable of solving MEW equation accurately and reliably. The stability analysis of the
method is shown to be unconditionally stable. It is also observed that the conservation
laws are reasonably well satisfied for the interaction of two solitary waves as well as single
solitary wave. The obtained results show that the method can be also used efficiently for
solving a large number of physically important non-linear partial differential equations.
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[9] T. Geyikli, S.B. Gazi Karakoç. Septic B-spline collocation method for the numerical solution
of the modified equal width wave equation. Applied Mathematics, 2011, 2(6): 739 - 749,
doi: 10.4236/am.2011.26098.
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