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Abstract. The modified equal width wave (MEW) equation is solved numeri-
cally by giving two different linearization techniques based on collocation finite
element method in which cubic B-splines are used as approximate functions. To
support our work three test problems; namely, the motion of a single solitary
wave, interaction of two solitary waves and the birth of solitons are studied.
Results are compared with other published numerical solutions available in the
literature. Accuracy of the proposed method is discussed by computing the nu-
merical conserved laws Lo and L, error norms. A linear stability analysis of the
approximation obtained by the scheme shows that the method is unconditionally
stable.
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1. Introduction
This paper is concerned with applying the cubic B-spline function to develop a

numerical method for approximating the analytic solution of the MEW equation
which was introduced by Morrison et al.[9] as a model for nonlinear dispersive
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waves. This equation has been solved analytically for a limited set of boundary
and initial conditions. So the numerical solutions of the MEW equation have
been the subject of many studies [1-7,11-19]. In this paper, we have used two
different linearization techniques to obtain the numerical solution of the MEW
equation. The performance of the method has been tested on three numerical
wave propagation experiments: the motion of a single solitary wave, the inter-
action of two solitary waves and birth of solitons. The stability analysis of the
the approximation obtained by the method is also investigated.

2. The Governing Equation and Collocation Solutions

MEW equation takes the form of
(1) Up +3U%U, — iUt = 0, a<z<b

with the physical boundary conditions U — 0 as * — +o00, where ¢t is time , x
is the space coordinate and p is a positive parameter. Appropriate boundary
conditions will be chosen as

U(a,t):(), U(byt 9
(2) Usat) = 0. Us(bt) =0,

Let us consider the interval [a,b] is partitioned into N finite elements of uni-
formly equal length by the knots z;, i = 0,1,2,...,N such that
a=1mxy <z <xny =band h = (x;41 — x;). The cubic B-splines ¢,(x)
, (4= -1(1) N+1), at the knots z; are defined over the interval [a, b] by [8]

(w_szZ)B? [ i L ]
h343h%(x — z,_,) + 3h(z —x,_,)*-3(z —x,_,)°, €z, q, ],
¢i(z) =75 h3+3h2(xi§r1—x) +3h(z, —2)* -3z, —2)°, € [2;, T4,
(miJr? - .’ﬂ) ) T e [ Lit1s z+2]7
0 otherwise.
The set of splines {¢_;(z), ¢o(2),. .., dn,1(x)} forms a basis for the functions

defined over [a,b]. Therefore an approximation solution Un (x,t) can be written
in terms of the cubic B- splines as trial functions:

N+1

(4) Un(et) = 3 o)t

i=—1

where 0;’s are unknown, time dependent quantities to be determined from the
boundary and cubic B-spline collocation conditions. Each cubic B-spline covers
four elements so that each element [x;, z;11] is covered by four cubic B-splines.
For this problem, the finite elements are identified with the interval [x;, z;41]
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and the elements knots x;, z;41. Using the nodal values U;, Ui/ and Ui”are given
in terms of the parameter §; by:

Uy =Ul(x;) = 6;—1 +46; + 0ip1,
(5) Ul =U'(z;) = %(*51'—1 +div1),
U =U"(2;) = 5 (6i—1 — 26; + 6i41)

and the variation of Uy (z,t) over the typical element [z;,z;11] is given by

1+2
(6) Un(z,t)= Y 6;(t)¢;(z) .

j=i—1

If we substitute the global approximation (4) and its necessary derivatives (5)
into Eq. (1), we obtain the following set of the first order ordinary differantial
equations:

. . 97,
(7)) di1+ 46+ i1+ = (—0;—1 +dit1) — 6

o %(51'—1 — 264+ 841) =0

h
where
Zi=(0i—1 +46; +i11)?

and - denotes derivative with respect to time. If time parameters d;’s and its
time derivatives ¢;’s in Eq. (7) are discretized by the Crank-Nicolson formula
and usual finite difference aproximation, respectively:

o 1 " — - 6n+1_5n
(8) b= @+, b=

we obtain a recurrence relationship between two time levels n and n+ 1 relating
two unknown parameters (5?“, o fori=m—1,m,m~+ 1,

(9) 7m1521t11 + szézﬂ + 7m353f+11 = Ym3Om—1+ VmaOm + Vm10mi1

where

(10) Ym1 = (1 _EZm _H')7 VYm2 = (4+2M)7 VYm3 = (1+EZm _M)
m:O,l,,N, E:%At, M:}%‘u

For the first linearization (First Lin.), we suppose that the quantity U in the
non-linear term UZ2U, to be locally constant. This is equivalent to assuming
that in Eq. (7) all U’s are equal to a local constant Z;.

For the second linearization (Second Lin.), using first order difference formula
for the time derivative of the U and Crank-Nicolson approximation for the space
derivatives U, and U,, in Eq. (1) lead to

U7L+1 _yn U2U$ n+1 + U2Um n Un+1 —_yUn

At 2 At 0-
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Now, if we apply Rubin and Graves [17] linearization technique to Eq. (11)
(U?U,) " = urtturur + UrutttUr 4 Urut Uttt - 2uum U
we obtain

Ut 4 38LUTIUNUR + UMUTIUR + UM URY) — pUH

(12) = U™ = 3L, — U, + 6ALURURUR).

The system (9) consists of N + 1 linear equations including N + 3 unknown pa-
rameters (0_1,...,6n+1)7. To obtain a unique solution to this system, we need
two additional constraints. These are obtained from the boundary conditions
and can be used to eliminate d_; and dyy; from the system (9) which then

becomes a matrix equation for the N + 1 unknowns d = (3¢, d1,...,6n5)7 of the
form
(13) Ad™t = Bd™.

The matrices A and B are tridiagonal (N 4 1) x (N + 1) matrices and so are
easily solved . However, two or three inner iterations are applied to the term
=6+ %(6” — 5"71) at each time step to cope with the non-linearity caused

2.1. Initial state

The initial vector d° is determined from the initial and boundary conditions.
So the approximation (4) must be rewritten for the initial condition

N+1

(14) Un(z,0)= Y 67(t)¢;(x)

i=—1

where the (5?’5 are unknown parameters. We require the initial numerical ap-
proximation Uy (x,0) satisfy the following conditions:

Un(z,0) =U(x;,0), 1=0,1,...,N

15
(15) (Un)e(a,0) = 0, (Un)a(5,0) = 0.
Thus, these conditions lead to matrix equation
(16) wd=b
where
4 2
1 4 1
1 4 1
W =
1 4 1
2 4
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d® = (60,01,02,...,0N—2,0N—1,0n)"

and

b= (U(x0,0),U(x1,0),U(z2,0),...,U(xn-2,0),U(zn-1,0),U(zn,0))".

2.2. Stability analysis

The investigation of the stability of the approximation obtained by the algorithm
will be based on the von Neumann theory in which the growth factor of a typical
Fourier mode is defined as:

n _ " ijkh
(17) on = §"elikh,

where k is the mode number and h is the element size. Thus the stability analysis
is determined for the linearisation of the approximation obtained by the numer-
ical scheme. Substituting the Fourier mode (17) into the linearised recurrence
relationship (9) shows that the growth factor for mod k is

a—1b
a+ib

(18) 9=

a=2+ M+ (1 - M)cos[hk],

(19) b= EZ;sinlhk].

The modulus of |g| is 1, therefore the linearised scheme is unconditionally stable.
3. Numerical Examples and Results

Numerical results of the equation for the three test problems were obtained and
all computations were executed on a pentium PC4 in the Fortran code using

double precision arithmetic. The MEW Eq. (1) possesses only three following
conservation laws:

L= ['Ude~h¥Y_ U,
b 2 n
(20) I = [, U+ p(Us)"de = W35, (UF)? +  (Us)]
Iy = [fUz =~ Y)Y (UM

which correspond to mass, momentum and energy respectively [10]. The accu-
racy of the method is measured by both the error norm Lo

47



2

)

N

(21) Ly = [t — Uy, =\ |h Y ‘U;wct — (Un),
J=0

and the error norm L

(22) Lo = U2 — Uy | = max U5 = (Uw), .

To implement the method, three test problems: motion of a single solitary
wave, interaction of two solitary waves and the maxwellian initial condition will
be considered.

4. Motion of a Single Solitary Wave

The solitary wave solution of the MEW Eq.(1) is given by
U(z,t) = Asech(klx — zo — vt])

where k = \/1/u, v = A%/2. This solution corresponds to motion of a single
solitary wave of magnitude A, initially centered at the position zy and propa-
gating to the right side with a constant velocity v. The initial condition is

U(z,0) = Asech(klx — xo]).

For this problem the analytical values of the invariants are [14]

Am 2A%  2ukA? 4A%
) I =22 =22 Iy = —.
(23) e N

The analytical values of the invariants are obtained from Eq. (1) as I; =
0.7853982 , I, = 0.1666667 , Is = 0.0052083. To compare our results with the
earlier papers, parameters are taken as At = 0.05, u =1, zg = 30, A =0.25
and the interval 0 < z < 80 is divided into elements of equal lenght h = 0.1. The
simulation is run up to time ¢t = 20, and the three invariants I, Is and I3 and
error norms Lo, L, are listed for the duration of the simulation. In Table 1, we
compare the values of the invariants and error norms obtained using the present
method with different approximations and those of [2, 5, 7] at different times.
As seen from the table, the error norms Ly and L, are found to be small enough
and the quantities in the variants remain almost constant during the computer
run. While for the first linearization, invariants I, Is and I3 change by less than
0.03 x 107°%, 5.48 x 107°%, 0.33 x 107°% for the second linearization they
change less than 0.02 x 107°%, 5.50 x 107°%, 0.30 x 10~°% throught the run,
respectively. Thus it is seen that the invariants remain satisfactorily constant.
Figure 1 shows that the proposed method performs the motion of propagation
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of a solitary wave satisfactorily, which moves to the right at a constant speed
and preserves its amplitude and shape with increasing time as expected. The
amplitude is 0.25 at ¢ = 0 and located at = = 30.6, while it is 0.249880 at ¢ = 20
and located at x = 30.6. The absolute difference in amplitudes at times ¢ = 0
and t = 20 is 12 x 107° so that there is a little change between amplitudes. The
error graph at ¢ = 20 is given in Figure 2. As it is seen, the maximum errors
occur around the central position of the solitary wave.

This problem is also considered for different values of the amplitude at h = 0.1
and t = 0.01. In Table 2, the error norms and the invariants are listed for
A =10.25,0.5,0.75,1. A comparison with Ref. [2] shows that the present method
provides better results in terms of the error norms Ly and L.,. Figure 3 shows
the solutions of the single solitary wave with h = 0.1, At = 0.01 for different
values of amplitude A at time ¢ = 20. It is clear that the soliton moves to the
right at a constant speed and almost preserves its amplitude and shape with
increasing of time, as expected.

5. Interaction of Two Solitary Waves

Now we consider Eq. (1) together with boundary conditions U — 0 as x — +00
and the initial condition for all linearization techniques as

U(z,0) = ZAj sec h(k[z — z;])

Jj=1

where k = /1/p.

Firstly, we have studied the interaction of two positive solitary waves with the
parameters h = 0.1, At =0.025, pu=1, A, =1, A = 0.5, 1 = 15, zo = 30
through the interval 0 < x < 80. The analytical values can be found as follows
[5]:

I = w(Aq + Ag) = 4.7123889,
(24) I = %(A% + A3) = 3.3333333,
Iy = 5(A] 4 A3) = 1.4166667.

The experiment was run from time ¢ = 0 to time ¢ = 80 to allow the interaction
take place. In Figure 4, we show the interaction of two positive solitary waves
at different times. It can be seen that at time t = 5 the wave with larger
amplitude is to the left of the second wave with smaller amplitude. The larger
wave catches up the smaller one as time increases. Interaction starts at about
time ¢ = 25, overlapping processes occurres between times ¢ = 25 and ¢t = 40
and the waves start to resume their original shapes after time ¢ = 40. An
oscillation of small amplitude trailing behind the solitary waves in Fig. 4(f) was
observed. In order to see this oscillation the scale of Fig. 4(f) was magnified
as shown in Fig 5. At time ¢ = 80, for the first linearization the amplitude
of the larger wave is 0.999694 at the point x = 44.4 whereas the amplitude of
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the smaller one is 0.510405 at the point x = 34.7. For the second linearization,
the amplitude of the larger wave is 0.999716 at the point x = 56.9 whereas the
amplitude of the smaller one is 0.498438 at the point x = 37.7. Table 3 compares
the values of the invariants of the two solitary waves with the obtained results
from the first and the second linearization. The absolute difference between
the values of the invariants obtained by the first linearization at times ¢t = 0
and t = 80 are AI; = 1.2 x 1075, AL, = 4 x 1077, Al; = 0 whereas they are
AL =1.1x107% AL, = 7.8x107% AI3; = 8x107%6 for the second linearization.
Secondly, for the solitary of amplitudes —2 and 1 to interact, we have chosen
the region as 0 < x < 150 while keeping all other parameters the same as
given before. The experiment was run from time ¢ = 0 to time ¢ = 55 to
allow the interaction take place. Figure 6 shows the development of the solitary
wave interaction. As it is seen from the Figure 6, at ¢ = 0 a wave with the
negative amplitude is to the left of another wave with the positive amplitude.
The larger wave with the negative amplitude catches up the smaller one with
the positive amplitude as time increases. At ¢ = 55, for the first linearization
the amplitude of the smaller wave is 0.974353 at the point x = 52.5, whereas
the amplitude of the larger one is —1.986150 at the point x = 122.7. It is found
that the absolute difference in amplitudes is 0.256 x 10~ for the smaller wave
and 0.138 x 10~! for the larger one. For the second linearization, the amplitude
of the smaller wave is 0.973607 at the point z = 52.5, whereas the amplitude of
the larger one is —1.988065 at the point x = 123.6. It is found that the absolute
difference in amplitudes is 0.263 x 10~! for the smaller wave and 0.119 x 107!
for the larger one. The analytical invariants by using Eq.(1) can be found as
I; = —3.1415927, I, = 13.3333333, I3 = 22.6666667. Table 4 lists the values of
the invariants of the two solitary waves with amplitude A; = —2 and A; =1
in the region 0 < x < 150 . It can be seen that the values obtained for the
invariants are satisfactorily constant during the computer run.

5.1. The Maxwellian initial condition

For this equation another initial value problem is the initial Maxwellian pulse
that is used as the initial condition in solitary waves given by

(25) Uz,0)=e*
with the boundary condition
U(—20,t) = U,(—20,t) = U(20,t) = U,(20,t) = 0,t > 0.

As it is known Maxwellian initial condition (25) breaks up into a number of
solitary waves depending on values of . So we have used various values for pu.
During the run of algorithms, we have taken h = 0.1, At = 0.01. The com-
putations are carried out for the cases of 4 = 1,0.5,0.1,0.05,0.02 and 0.005
. For u = 1, the Maxwellian initial condition develops into a pair of waves as
indicated in Figure 7. One wave with the negative amplitude is to the left of
the other wave with the positive amplitude. For y = 0.5, the Maxwellian initial
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condition does not cause development into a clean solitary wave. When p = 0.1,
we observed one clean solitary wave. For u = 0.05, the state is two solitary
waves. For p = 0.02 and 0.005 three and seven solitary waves are formed,
respectively. The recorded values of the invariants I, I and I3 computed for
both linerazation techniques are given in Table 5 and 6. It is observed that the
obtained values of the invariants remain almost constant during the computer
run.

6. Conclusions

In this paper, numerical solutions of the MEW equation based on the cubic B-
spline finite element have been presented. Three test problems are worked out
to examine the performance of the algorithms. The performance and accuracy
of the method is shown by calculating the error norms Ly and L.,. For each
linearization technique, the error norms are sufficiently small and the invariants
are satisfactorily constant in all computer runs. The computed results show that
the present method is a remarkably successful numerical technique for solving
the MEW equation and advisable for getting numerical solutions of other types
of non-linear equations.
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Figure 1. The motion of a single solitary wave with
h=1, At =0.05 at (a) t =0 and (b) t = 20.
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Figure 2. Error graph at ¢ = 20.
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%)



2 4

001

Gflj-—ﬂ,——/j |

=80

a
L3
3
-0.01
-0
-0
0

&

Figure 5. An expanded vertical scale of Fig.4(f) at t=80.

96



] E] ™ o = w 0 = = 5 o m ] ] ] = ™ m

|
|
Al ll\ l||| | \‘ \H h ‘\
S AU () S | oL

o a0 0 a @ a a m 0 0 L]

Figure 7. Maxwellianinitialcondition,stateattime ¢t = 12, a) p =1,
b) u=10.5, ¢) p=0.1, d) £ =0.05, e) p=0.02, f) p=0.005

57



Table 1. The invariants and the error norms for single solitary wave with
h=0.1, At =0.05, A=0.25, 0 <z < 80.

t Linearization Iy Ia I3 Lo % 103 Leo x 103
0 0.7853066 0.1666661 0.0052083 0.0000000 0.0000000
B 0.7853066 0.1666662 0.0052083 0.0447287 0.0423454
10 First 0.7853966 0.1666662 0.0052083 0.0890880 0.0867227
15 0.7853066 0.1666662 0.0052083 0.1327179 0.1316963
20 0.7853966 0.1666662 0.0052083 0.1752771 0.1764657
0 0.7853966 0.1666661 0.0052083 0.0000000 0.0000000
5 0.7853066 0.1666662 0.0052083 0.0447267 0.0423438
10 Second 0.7853966 0.1666662 0.0052083 0.0890842 0.0867198
15 0.7853966 D.1666662 0.0052083 0.1327126 0.1316924
20 0.7853066 0.1666662 0.0052083 0.1752706 0.1764596
20[2] 0.7853977 0.1664735 0.0052083 0.2692812 0.2569972
20(5] 0.7849545 0.1664765 0.0051995 0.2498925 0.2905166
20(7] - - - 0.1958878 0.1744330
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Table 2. The computed values I7, I and I3 and the error norms Lo
and L., for the single solitary wave with o = 30, h = 0.1, At = 0.01
in the region 0 < z < 80.

A t I I I3 Lz x 10% Lo 3 1TF

0 0.7853966  0.1666661  0.0052083  0.00000000 0.0000000

5 0.7853966 0.1666662 0.0052083 0.04471776  0.04233505

0.25 10 0.7853966 0.1666662  0.0052083  0.08006601  0.08670116

15 0.7853966 0.1666662 0.0052083  0.13268479 0.13166280

20 0.7853967 0.1666662  0.0052083 0.17523269 0.17642205

20[2] - - - 0.2692249 0.2569562

0 15707932 0.6666646  0.0833330 0.0000000 0.0000000

5 1.5707932 0.6666649 0.0833330 0.35052093 0.35289878

0.5 10 15707932 0.6666656  0.0833330 0.65824902 (.65054805

15 15707932 0.6666659  0.0833330 0.89807157 0.80335418

20 15707931 0.6666660  0.0833330 1.06979673  (.86864227

20[2] - - - 1.82660590 1.4575680

0 23561807  1.4999953 0.4218734 0.0000000 0.0000000

5 2.3561807  1.4999978 04218733  1.08833328  1.05417097

0.75 10 23561897  1.4999985 0.4218733 1.70491172  1.33432195

15 23561806  1.4999983 0.4218733 2.01264576 1.46558019

20 23561806  1.4099982 (0.4218733  2.24293300 1.62010840

20[2] - - - 4.3857110 3.0917930

0 3.1415863  2.6666583  1.3333283  0.00000000 0.0000000

5 3.1415858  2.6666633  1.3333275  2.14753916  1.74396281

1.0 10 3.1415852  2.6666624  1.3333268 287024724  2.07526179

15 3.1415847 2.6666616  1.3333261  3.41524802  2.45685025

20 3.1415842  2.6666600  1.3333253  3.98833508  2.84859636

20[2] - - - 8.2853140 5.6821310
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Table 3. Invariants and error norms for single solitary wave with
A1 = ]., A2 = 05, h = 01, At = 005

i Linearization Iy Ia I3

0 4.7123733 3.3333253 1.4166643
10 4.7123744 3.3333216 1.4166642
20 4.7123744 3.3333202 1.4166640
30 4.7123744 3.3334406 14166576
40 4.7123749 3.3332759 1.4166614
50 First 4.7123751 3.3332328 1. 4166646
55 4.7123750 3.3332427 1.4166646
60 47123748 3.3332663 1.4166645
70 4.7123745 3.3333083 1.4166643
80 4.7123745 3.3333257 1.4166643
0 4.7123733 3.3333253 1.4166643
10 4.7123744 3.3333303 1.4166630
20 4.7123744 3.3333274 1.4166614
30 4.7123744 3.3334217 1.4166397
40 4.7123748 3.3332640 1.4166490
50 Second 4.7123751 3.3332280 1.4166599
55 4.7123750 3.3332374 1.4166594
60 4.7123748 3.3332604 1.4166588
70 4.7123745 3.3333013 1.4166575
80 4.7123744 3.3333175 1.4166563
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Table 4. Invariants and error norms for single solitary wave with
Ay =-2, Ao =1, h=0.1, At =0.05

t Linearization I I I3

0 -3.1415739 13.3332816 22.6665313
5 -3.1415915 13.3220192 22.6214073
15 -3.1416695 13.2800001 22.4507282
25 First -3.1417066 13.2588994 22.3620141
35 -3.1417376 13.2368786 22.2744329
45 -3.1417686 13.2150822 221879289
55 -3.1417997 13.1935069 22.1024801
0 -3.1415739 13.3332816 22.6665313
5 -3.1391878 13.3197925 22.6125339
15 -3.1325941 13.2800027 22.4661827
25 Second -3.1278712 13.2544025 22.3595729
35 -3.1231851 13.2280040 22.2545970
45 -3.1185508 13.2019283 22.1511668
55 -3.1139673 13.1761691 22.0492444
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Table 5. The invariants I, Is and I3 obtained during the first linerazation
technique for Maxwellian initial condition and different values of p.

t Iz I I I3 5 I Iz I3
0 1.7724537  2.5066073  0.8862269 0.05 1.7724537  1.3159788  0.8862269
3 1.7724575  2.5066329  0.8862412 1.7724772 1.3108104  0.8879092
6 1.7724455  2.5083459  0.8862054 1.7722951 1.3095477  0.8872762
9 1.7724423  2.5089578  0.8861997 1.7720383 1.3090815 0.8865516
12 1.7724416  2.5089588  0.8861999 1.7717951 1.3086207  0.8858297
0 0.5 1.7724537 1.8799607  0.8862269 0.02 1.7724537  1.2783800  0.8862269
1.7724591 1.8794240  0.8862548 1.7722682 1.2675724  0.8938665
1.7724493  1.8803887  0.8862197 1.7707571 1.2633830 0.8876738
1.7724486 1.8804044  0.8862190 1.7690538 1.2599281 0.8814034
12 1.7724477 1.8803945  0.8862180 1.7674587 1.2566543 0.8753965

0 0.1 1.7724537 1.3786434 0.8862269 | 0.005 1.7724537 1.2595806  0.8862269

1.7724794  1.3755873  0.8867179 1.7706812  1.2537689  0.9975863
6 1.7724372  1.3754596  0.8866053 1.7561181 1.2181356 0.9105701
1.7724019 1.3752156  0.8864986 1.7428768  1.1841292 0.8076883
12 1.7723629 1.3750049  0.8863910 1.7355300 1.1793688  0.8151322

Table 6. The invariants I, I and I3 obtained during the second
linerazation technique for Maxwellian initial condition and different
values of p.

t I I> I3 Iz I Iz I3
0 1.7724537 25066073  0.8862269 0.05 1.7724537 1.3159788  0.8862269
3 1.7724579  2.5066333  0.8862417 1.7726434  1.3112290 0.8885770
6 1.7724462  2.5083441  0.8862055 1.7727156  1.3103771  0.8886312
9 1.7724431 2.5089549  0.8861997 1.7727126  1.3103199  0.8885918
12 1.7724425  2.5089559  0.8861999 1.7722229 1.3102667  0.8855532
Q0 0.5 1.7724537 1.8799607  0.8862269 0.02 1.7724537 1.2783800 0.8862269
3 1.7724603 1.8794269  0.8862569 1.7735172 1.2701095 0.8988266
6 1.7724515 1.8803898 0.8862219 1.7737897 1.2689727  0.8987264
9 1.7724516 1.8804063  0.8862220 1.7738490 1.2685999 0.8987989
12 1.7724515  1.8803973  0.8862220 1.7739619 1.2681353  0.8981215
0 0.1 1.7724537 1.3786434  0.8862269 | 0.005 1.7724537 1.2595806 0.8862269
1.7725113 1.3756928 0.8868511 1.7810616 1.2617060 0.9784616
1.7725176  1.3756383  0.8868441 1.7814725  1.2565368  0.9844928
9 1.7725309  1.3754676  0.8868429 1.7827076  1.2588371  0.9925560
12 1.7725405  1.3753301  0.8868407 1.7812130 1.2467044  0.9383488
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